Commit eca362bd authored by Nikolay Sivov's avatar Nikolay Sivov Committed by Alexandre Julliard

dwrite: Fix problems with outline conversion and reporting.

parent 3494fb7f
......@@ -448,7 +448,7 @@ HRESULT new_glyph_outline(UINT32 count, struct glyph_outline **ret)
return E_OUTOFMEMORY;
points = heap_alloc(count*sizeof(D2D1_POINT_2F));
tags = heap_alloc(count*sizeof(UINT8));
tags = heap_alloc_zero(count*sizeof(UINT8));
if (!points || !tags) {
heap_free(points);
heap_free(tags);
......
......@@ -244,109 +244,124 @@ static inline void ft_vector_to_d2d_point(const FT_Vector *v, D2D1_POINT_2F *p)
p->y = v->y / 64.0;
}
static HRESULT get_outline_data(const FT_Outline *outline, struct glyph_outline **ret)
/* Convert the quadratic Beziers to cubic Beziers. */
static void get_cubic_glyph_outline(const FT_Outline *outline, short point, short first_pt,
short contour, FT_Vector *cubic_control)
{
short i, j, contour = 0;
D2D1_POINT_2F *points;
UINT16 count = 0;
UINT8 *tags;
HRESULT hr;
/* we need all curves in cubic format */
for (i = 0; i < outline->n_points; i++) {
/* control point */
if (!(outline->tags[i] & FT_Curve_Tag_On)) {
if (!(outline->tags[i] & FT_Curve_Tag_Cubic)) {
count++;
}
/*
The parametric eqn for a cubic Bezier is, from PLRM:
r(t) = at^3 + bt^2 + ct + r0
with the control points:
r1 = r0 + c/3
r2 = r1 + (c + b)/3
r3 = r0 + c + b + a
A quadratic Bezier has the form:
p(t) = (1-t)^2 p0 + 2(1-t)t p1 + t^2 p2
So equating powers of t leads to:
r1 = 2/3 p1 + 1/3 p0
r2 = 2/3 p1 + 1/3 p2
and of course r0 = p0, r3 = p2
*/
/* FIXME: Possible optimization in endpoint calculation
if there are two consecutive curves */
cubic_control[0] = outline->points[point-1];
if (!(outline->tags[point-1] & FT_Curve_Tag_On)) {
cubic_control[0].x += outline->points[point].x + 1;
cubic_control[0].y += outline->points[point].y + 1;
cubic_control[0].x >>= 1;
cubic_control[0].y >>= 1;
}
if (point+1 > outline->contours[contour])
cubic_control[3] = outline->points[first_pt];
else {
cubic_control[3] = outline->points[point+1];
if (!(outline->tags[point+1] & FT_Curve_Tag_On)) {
cubic_control[3].x += outline->points[point].x + 1;
cubic_control[3].y += outline->points[point].y + 1;
cubic_control[3].x >>= 1;
cubic_control[3].y >>= 1;
}
count++;
}
hr = new_glyph_outline(count, ret);
if (FAILED(hr))
return hr;
points = (*ret)->points;
tags = (*ret)->tags;
/* r1 = 1/3 p0 + 2/3 p1
r2 = 1/3 p2 + 2/3 p1 */
cubic_control[1].x = (2 * outline->points[point].x + 1) / 3;
cubic_control[1].y = (2 * outline->points[point].y + 1) / 3;
cubic_control[2] = cubic_control[1];
cubic_control[1].x += (cubic_control[0].x + 1) / 3;
cubic_control[1].y += (cubic_control[0].y + 1) / 3;
cubic_control[2].x += (cubic_control[3].x + 1) / 3;
cubic_control[2].y += (cubic_control[3].y + 1) / 3;
}
ft_vector_to_d2d_point(outline->points, points);
tags[0] = OUTLINE_POINT_START;
static inline void set_outline_end_tag(short point, short endpoint, UINT8 *tag)
{
if (point == endpoint)
*tag |= OUTLINE_POINT_END;
}
for (i = 1, j = 1; i < outline->n_points; i++, j++) {
/* mark start of new contour */
if (tags[j-1] & OUTLINE_POINT_END)
tags[j] = OUTLINE_POINT_START;
else
tags[j] = 0;
static short get_outline_data(const FT_Outline *outline, struct glyph_outline *ret)
{
short contour, point = 0, first_pt, count;
if (outline->tags[i] & FT_Curve_Tag_On) {
ft_vector_to_d2d_point(outline->points+i, points+j);
tags[j] |= OUTLINE_POINT_LINE;
for (contour = 0, count = 0; contour < outline->n_contours; contour++) {
first_pt = point;
if (ret) {
ft_vector_to_d2d_point(&outline->points[point], &ret->points[count]);
ret->tags[count] = OUTLINE_POINT_START;
}
else {
/* third order curve */
if (outline->tags[i] & FT_Curve_Tag_Cubic) {
/* store 3 points, advance 3 points */
ft_vector_to_d2d_point(outline->points+i, points+j);
ft_vector_to_d2d_point(outline->points+i+1, points+j+1);
ft_vector_to_d2d_point(outline->points+i+2, points+j+2);
point++;
count++;
i += 2;
while (point <= outline->contours[contour]) {
do {
if (outline->tags[point] & FT_Curve_Tag_On) {
if (ret) {
ft_vector_to_d2d_point(&outline->points[point], &ret->points[count]);
ret->tags[count] |= OUTLINE_POINT_LINE;
set_outline_end_tag(point, outline->contours[contour], &ret->tags[count]);
}
point++;
count++;
}
else {
if (ret) {
FT_Vector cubic_control[4];
get_cubic_glyph_outline(outline, point, first_pt, contour, cubic_control);
ft_vector_to_d2d_point(&cubic_control[1], &ret->points[count]);
ft_vector_to_d2d_point(&cubic_control[2], &ret->points[count+1]);
ft_vector_to_d2d_point(&cubic_control[3], &ret->points[count+2]);
ret->tags[count] = OUTLINE_POINT_BEZIER;
ret->tags[count+1] = OUTLINE_POINT_BEZIER;
ret->tags[count+2] = OUTLINE_POINT_BEZIER;
set_outline_end_tag(point, outline->contours[contour], &ret->tags[count+2]);
}
count += 3;
point++;
}
} while (point <= outline->contours[contour] &&
(outline->tags[point] & FT_Curve_Tag_On) ==
(outline->tags[point-1] & FT_Curve_Tag_On));
if (point <= outline->contours[contour] &&
outline->tags[point] & FT_Curve_Tag_On)
{
/* This is the closing pt of a bezier, but we've already
added it, so just inc point and carry on */
point++;
}
else {
FT_Vector vec;
/* Convert the quadratic Beziers to cubic Beziers.
The parametric eqn for a cubic Bezier is, from PLRM:
r(t) = at^3 + bt^2 + ct + r0
with the control points:
r1 = r0 + c/3
r2 = r1 + (c + b)/3
r3 = r0 + c + b + a
A quadratic Bezier has the form:
p(t) = (1-t)^2 p0 + 2(1-t)t p1 + t^2 p2
So equating powers of t leads to:
r1 = 2/3 p1 + 1/3 p0
r2 = 2/3 p1 + 1/3 p2
and of course r0 = p0, r3 = p2
*/
/* r1 */
vec.x = 2 * outline->points[i].x + outline->points[i-1].x;
vec.y = 2 * outline->points[i].y + outline->points[i-1].y;
ft_vector_to_d2d_point(&vec, points+j);
points[j].x /= 3.0;
points[j].y /= 3.0;
/* r2 */
vec.x = 2 * outline->points[i].x + outline->points[i+1].x;
vec.y = 2 * outline->points[i].y + outline->points[i+1].y;
ft_vector_to_d2d_point(&vec, points+j+1);
points[j+1].x /= 3.0;
points[j+1].y /= 3.0;
/* r3 */
ft_vector_to_d2d_point(outline->points+i+1, points+j+2);
i++;
}
tags[j] = tags[j+1] = tags[j+2] = OUTLINE_POINT_BEZIER;
j += 2;
}
/* mark end point */
if (i < outline->n_points && outline->contours[contour] == i) {
tags[j] |= OUTLINE_POINT_END;
contour++;
}
}
return S_OK;
return count;
}
HRESULT freetype_get_glyph_outline(IDWriteFontFace2 *fontface, FLOAT emSize, UINT16 index, USHORT simulations, struct glyph_outline **ret)
......@@ -366,6 +381,7 @@ HRESULT freetype_get_glyph_outline(IDWriteFontFace2 *fontface, FLOAT emSize, UIN
if (pFTC_Manager_LookupSize(cache_manager, &scaler, &size) == 0) {
if (pFT_Load_Glyph(size->face, index, FT_LOAD_DEFAULT) == 0) {
FT_Outline *outline = &size->face->glyph->outline;
short count;
FT_Matrix m;
m.xx = 1 << 16;
......@@ -375,9 +391,12 @@ HRESULT freetype_get_glyph_outline(IDWriteFontFace2 *fontface, FLOAT emSize, UIN
pFT_Outline_Transform(outline, &m);
hr = get_outline_data(outline, ret);
if (hr == S_OK)
count = get_outline_data(outline, NULL);
hr = new_glyph_outline(count, ret);
if (hr == S_OK) {
get_outline_data(outline, *ret);
(*ret)->advance = size->face->glyph->metrics.horiAdvance >> 6;
}
}
}
LeaveCriticalSection(&freetype_cs);
......
......@@ -469,7 +469,9 @@ static void WINAPI test_geometrysink_BeginFigure(ID2D1SimplifiedGeometrySink *if
D2D1_POINT_2F startPoint, D2D1_FIGURE_BEGIN figureBegin)
{
ok(figureBegin == D2D1_FIGURE_BEGIN_FILLED, "begin figure %d\n", figureBegin);
g_startpoints[g_startpoint_count++] = startPoint;
if (g_startpoint_count < sizeof(g_startpoints)/sizeof(g_startpoints[0]))
g_startpoints[g_startpoint_count] = startPoint;
g_startpoint_count++;
}
static void WINAPI test_geometrysink_AddLines(ID2D1SimplifiedGeometrySink *iface,
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment