/* * Tokens * * Copyright (C) 1998 Alexandre Julliard * Copyright (C) 2003 Mike McCormack * Copyright (C) 2005 Robert Shearman * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA */ #include "config.h" #include <assert.h> #include <stdio.h> #include <stdlib.h> #include <stdarg.h> #include <unistd.h> #include "ntstatus.h" #define WIN32_NO_STATUS #include "windef.h" #include "winternl.h" #include "handle.h" #include "thread.h" #include "process.h" #include "request.h" #include "security.h" #define MAX_SUBAUTH_COUNT 1 const LUID SeIncreaseQuotaPrivilege = { 5, 0 }; const LUID SeTcbPrivilege = { 7, 0 }; const LUID SeSecurityPrivilege = { 8, 0 }; const LUID SeTakeOwnershipPrivilege = { 9, 0 }; const LUID SeLoadDriverPrivilege = { 10, 0 }; const LUID SeSystemProfilePrivilege = { 11, 0 }; const LUID SeSystemtimePrivilege = { 12, 0 }; const LUID SeProfileSingleProcessPrivilege = { 13, 0 }; const LUID SeIncreaseBasePriorityPrivilege = { 14, 0 }; const LUID SeCreatePagefilePrivilege = { 15, 0 }; const LUID SeBackupPrivilege = { 17, 0 }; const LUID SeRestorePrivilege = { 18, 0 }; const LUID SeShutdownPrivilege = { 19, 0 }; const LUID SeDebugPrivilege = { 20, 0 }; const LUID SeSystemEnvironmentPrivilege = { 22, 0 }; const LUID SeChangeNotifyPrivilege = { 23, 0 }; const LUID SeRemoteShutdownPrivilege = { 24, 0 }; const LUID SeUndockPrivilege = { 25, 0 }; const LUID SeManageVolumePrivilege = { 28, 0 }; const LUID SeImpersonatePrivilege = { 29, 0 }; const LUID SeCreateGlobalPrivilege = { 30, 0 }; #define SID_N(n) struct /* same fields as struct SID */ \ { \ BYTE Revision; \ BYTE SubAuthorityCount; \ SID_IDENTIFIER_AUTHORITY IdentifierAuthority; \ DWORD SubAuthority[n]; \ } static const SID world_sid = { SID_REVISION, 1, { SECURITY_WORLD_SID_AUTHORITY }, { SECURITY_WORLD_RID } }; static const SID local_sid = { SID_REVISION, 1, { SECURITY_LOCAL_SID_AUTHORITY }, { SECURITY_LOCAL_RID } }; static const SID interactive_sid = { SID_REVISION, 1, { SECURITY_NT_AUTHORITY }, { SECURITY_INTERACTIVE_RID } }; static const SID anonymous_logon_sid = { SID_REVISION, 1, { SECURITY_NT_AUTHORITY }, { SECURITY_ANONYMOUS_LOGON_RID } }; static const SID authenticated_user_sid = { SID_REVISION, 1, { SECURITY_NT_AUTHORITY }, { SECURITY_AUTHENTICATED_USER_RID } }; static const SID local_system_sid = { SID_REVISION, 1, { SECURITY_NT_AUTHORITY }, { SECURITY_LOCAL_SYSTEM_RID } }; static const SID high_label_sid = { SID_REVISION, 1, { SECURITY_MANDATORY_LABEL_AUTHORITY }, { SECURITY_MANDATORY_HIGH_RID } }; static const SID_N(5) local_user_sid = { SID_REVISION, 5, { SECURITY_NT_AUTHORITY }, { SECURITY_NT_NON_UNIQUE, 0, 0, 0, 1000 } }; static const SID_N(2) builtin_admins_sid = { SID_REVISION, 2, { SECURITY_NT_AUTHORITY }, { SECURITY_BUILTIN_DOMAIN_RID, DOMAIN_ALIAS_RID_ADMINS } }; static const SID_N(2) builtin_users_sid = { SID_REVISION, 2, { SECURITY_NT_AUTHORITY }, { SECURITY_BUILTIN_DOMAIN_RID, DOMAIN_ALIAS_RID_USERS } }; static const SID_N(3) builtin_logon_sid = { SID_REVISION, 3, { SECURITY_NT_AUTHORITY }, { SECURITY_LOGON_IDS_RID, 0, 0 } }; static const SID_N(5) domain_users_sid = { SID_REVISION, 5, { SECURITY_NT_AUTHORITY }, { SECURITY_NT_NON_UNIQUE, 0, 0, 0, DOMAIN_GROUP_RID_USERS } }; const PSID security_world_sid = (PSID)&world_sid; static const PSID security_local_sid = (PSID)&local_sid; static const PSID security_interactive_sid = (PSID)&interactive_sid; static const PSID security_authenticated_user_sid = (PSID)&authenticated_user_sid; const PSID security_local_system_sid = (PSID)&local_system_sid; const PSID security_local_user_sid = (PSID)&local_user_sid; const PSID security_builtin_admins_sid = (PSID)&builtin_admins_sid; const PSID security_builtin_users_sid = (PSID)&builtin_users_sid; const PSID security_domain_users_sid = (PSID)&domain_users_sid; const PSID security_high_label_sid = (PSID)&high_label_sid; static luid_t prev_luid_value = { 1000, 0 }; static const WCHAR token_name[] = {'T','o','k','e','n'}; struct type_descr token_type = { { token_name, sizeof(token_name) }, /* name */ TOKEN_ALL_ACCESS | SYNCHRONIZE, /* valid_access */ { /* mapping */ STANDARD_RIGHTS_READ | TOKEN_QUERY_SOURCE | TOKEN_QUERY | TOKEN_DUPLICATE, STANDARD_RIGHTS_WRITE | TOKEN_ADJUST_SESSIONID | TOKEN_ADJUST_DEFAULT | TOKEN_ADJUST_GROUPS | TOKEN_ADJUST_PRIVILEGES, STANDARD_RIGHTS_EXECUTE | TOKEN_IMPERSONATE | TOKEN_ASSIGN_PRIMARY, TOKEN_ALL_ACCESS }, }; struct token { struct object obj; /* object header */ luid_t token_id; /* system-unique id of token */ luid_t modified_id; /* new id allocated every time token is modified */ struct list privileges; /* privileges available to the token */ struct list groups; /* groups that the user of this token belongs to (sid_and_attributes) */ SID *user; /* SID of user this token represents */ SID *owner; /* SID of owner (points to user or one of groups) */ SID *primary_group; /* SID of user's primary group (points to one of groups) */ unsigned primary; /* is this a primary or impersonation token? */ ACL *default_dacl; /* the default DACL to assign to objects created by this user */ TOKEN_SOURCE source; /* source of the token */ int impersonation_level; /* impersonation level this token is capable of if non-primary token */ int elevation; /* elevation type */ }; struct privilege { struct list entry; LUID luid; unsigned enabled : 1; /* is the privilege currently enabled? */ unsigned def : 1; /* is the privilege enabled by default? */ }; struct group { struct list entry; unsigned enabled : 1; /* is the sid currently enabled? */ unsigned def : 1; /* is the sid enabled by default? */ unsigned logon : 1; /* is this a logon sid? */ unsigned mandatory: 1; /* is this sid always enabled? */ unsigned owner : 1; /* can this sid be an owner of an object? */ unsigned resource : 1; /* is this a domain-local group? */ unsigned deny_only: 1; /* is this a sid that should be use for denying only? */ SID sid; }; static void token_dump( struct object *obj, int verbose ); static void token_destroy( struct object *obj ); static const struct object_ops token_ops = { sizeof(struct token), /* size */ &token_type, /* type */ token_dump, /* dump */ no_add_queue, /* add_queue */ NULL, /* remove_queue */ NULL, /* signaled */ NULL, /* satisfied */ no_signal, /* signal */ no_get_fd, /* get_fd */ default_map_access, /* map_access */ default_get_sd, /* get_sd */ default_set_sd, /* set_sd */ no_get_full_name, /* get_full_name */ no_lookup_name, /* lookup_name */ no_link_name, /* link_name */ NULL, /* unlink_name */ no_open_file, /* open_file */ no_kernel_obj_list, /* get_kernel_obj_list */ no_close_handle, /* close_handle */ token_destroy /* destroy */ }; static void token_dump( struct object *obj, int verbose ) { struct token *token = (struct token *)obj; assert( obj->ops == &token_ops ); fprintf( stderr, "Token id=%d.%u primary=%u impersonation level=%d\n", token->token_id.high_part, token->token_id.low_part, token->primary, token->impersonation_level ); } static SID *security_sid_alloc( const SID_IDENTIFIER_AUTHORITY *idauthority, int subauthcount, const unsigned int subauth[] ) { int i; SID *sid = mem_alloc( FIELD_OFFSET(SID, SubAuthority[subauthcount]) ); if (!sid) return NULL; sid->Revision = SID_REVISION; sid->SubAuthorityCount = subauthcount; sid->IdentifierAuthority = *idauthority; for (i = 0; i < subauthcount; i++) sid->SubAuthority[i] = subauth[i]; return sid; } void security_set_thread_token( struct thread *thread, obj_handle_t handle ) { if (!handle) { if (thread->token) release_object( thread->token ); thread->token = NULL; } else { struct token *token = (struct token *)get_handle_obj( current->process, handle, TOKEN_IMPERSONATE, &token_ops ); if (token) { if (thread->token) release_object( thread->token ); thread->token = token; } } } const SID *security_unix_uid_to_sid( uid_t uid ) { /* very simple mapping: either the current user or not the current user */ if (uid == getuid()) return (const SID *)&local_user_sid; else return &anonymous_logon_sid; } static int acl_is_valid( const ACL *acl, data_size_t size ) { ULONG i; const ACE_HEADER *ace; if (size < sizeof(ACL)) return FALSE; size = min(size, MAX_ACL_LEN); size -= sizeof(ACL); ace = (const ACE_HEADER *)(acl + 1); for (i = 0; i < acl->AceCount; i++) { const SID *sid; data_size_t sid_size; if (size < sizeof(ACE_HEADER)) return FALSE; if (size < ace->AceSize) return FALSE; size -= ace->AceSize; switch (ace->AceType) { case ACCESS_DENIED_ACE_TYPE: sid = (const SID *)&((const ACCESS_DENIED_ACE *)ace)->SidStart; sid_size = ace->AceSize - FIELD_OFFSET(ACCESS_DENIED_ACE, SidStart); break; case ACCESS_ALLOWED_ACE_TYPE: sid = (const SID *)&((const ACCESS_ALLOWED_ACE *)ace)->SidStart; sid_size = ace->AceSize - FIELD_OFFSET(ACCESS_ALLOWED_ACE, SidStart); break; case SYSTEM_AUDIT_ACE_TYPE: sid = (const SID *)&((const SYSTEM_AUDIT_ACE *)ace)->SidStart; sid_size = ace->AceSize - FIELD_OFFSET(SYSTEM_AUDIT_ACE, SidStart); break; case SYSTEM_ALARM_ACE_TYPE: sid = (const SID *)&((const SYSTEM_ALARM_ACE *)ace)->SidStart; sid_size = ace->AceSize - FIELD_OFFSET(SYSTEM_ALARM_ACE, SidStart); break; case SYSTEM_MANDATORY_LABEL_ACE_TYPE: sid = (const SID *)&((const SYSTEM_MANDATORY_LABEL_ACE *)ace)->SidStart; sid_size = ace->AceSize - FIELD_OFFSET(SYSTEM_MANDATORY_LABEL_ACE, SidStart); break; default: return FALSE; } if (sid_size < FIELD_OFFSET(SID, SubAuthority[0]) || sid_size < security_sid_len( sid )) return FALSE; ace = ace_next( ace ); } return TRUE; } static unsigned int get_sid_count( const SID *sid, data_size_t size ) { unsigned int count; for (count = 0; size >= sizeof(SID) && security_sid_len( sid ) <= size; count++) { size -= security_sid_len( sid ); sid = (const SID *)((char *)sid + security_sid_len( sid )); } return count; } /* checks whether all members of a security descriptor fit inside the size * of memory specified */ int sd_is_valid( const struct security_descriptor *sd, data_size_t size ) { size_t offset = sizeof(struct security_descriptor); const SID *group; const SID *owner; const ACL *sacl; const ACL *dacl; int dummy; if (size < offset) return FALSE; if ((sd->owner_len >= FIELD_OFFSET(SID, SubAuthority[255])) || (offset + sd->owner_len > size)) return FALSE; owner = sd_get_owner( sd ); if (owner) { if ((sd->owner_len < sizeof(SID)) || (security_sid_len( owner ) > sd->owner_len)) return FALSE; } offset += sd->owner_len; if ((sd->group_len >= FIELD_OFFSET(SID, SubAuthority[255])) || (offset + sd->group_len > size)) return FALSE; group = sd_get_group( sd ); if (group) { if ((sd->group_len < sizeof(SID)) || (security_sid_len( group ) > sd->group_len)) return FALSE; } offset += sd->group_len; if ((sd->sacl_len >= MAX_ACL_LEN) || (offset + sd->sacl_len > size)) return FALSE; sacl = sd_get_sacl( sd, &dummy ); if (sacl && !acl_is_valid( sacl, sd->sacl_len )) return FALSE; offset += sd->sacl_len; if ((sd->dacl_len >= MAX_ACL_LEN) || (offset + sd->dacl_len > size)) return FALSE; dacl = sd_get_dacl( sd, &dummy ); if (dacl && !acl_is_valid( dacl, sd->dacl_len )) return FALSE; offset += sd->dacl_len; return TRUE; } /* extract security labels from SACL */ ACL *extract_security_labels( const ACL *sacl ) { size_t size = sizeof(ACL); const ACE_HEADER *ace; ACE_HEADER *label_ace; unsigned int i, count = 0; ACL *label_acl; ace = (const ACE_HEADER *)(sacl + 1); for (i = 0; i < sacl->AceCount; i++, ace = ace_next( ace )) { if (ace->AceType == SYSTEM_MANDATORY_LABEL_ACE_TYPE) { size += ace->AceSize; count++; } } label_acl = mem_alloc( size ); if (!label_acl) return NULL; label_acl->AclRevision = sacl->AclRevision; label_acl->Sbz1 = 0; label_acl->AclSize = size; label_acl->AceCount = count; label_acl->Sbz2 = 0; label_ace = (ACE_HEADER *)(label_acl + 1); ace = (const ACE_HEADER *)(sacl + 1); for (i = 0; i < sacl->AceCount; i++, ace = ace_next( ace )) { if (ace->AceType == SYSTEM_MANDATORY_LABEL_ACE_TYPE) { memcpy( label_ace, ace, ace->AceSize ); label_ace = (ACE_HEADER *)ace_next( label_ace ); } } return label_acl; } /* replace security labels in an existing SACL */ ACL *replace_security_labels( const ACL *old_sacl, const ACL *new_sacl ) { const ACE_HEADER *ace; ACE_HEADER *replaced_ace; size_t size = sizeof(ACL); unsigned int i, count = 0; BYTE revision = ACL_REVISION; ACL *replaced_acl; if (old_sacl) { revision = max( revision, old_sacl->AclRevision ); ace = (const ACE_HEADER *)(old_sacl + 1); for (i = 0; i < old_sacl->AceCount; i++, ace = ace_next( ace )) { if (ace->AceType == SYSTEM_MANDATORY_LABEL_ACE_TYPE) continue; size += ace->AceSize; count++; } } if (new_sacl) { revision = max( revision, new_sacl->AclRevision ); ace = (const ACE_HEADER *)(new_sacl + 1); for (i = 0; i < new_sacl->AceCount; i++, ace = ace_next( ace )) { if (ace->AceType != SYSTEM_MANDATORY_LABEL_ACE_TYPE) continue; size += ace->AceSize; count++; } } replaced_acl = mem_alloc( size ); if (!replaced_acl) return NULL; replaced_acl->AclRevision = revision; replaced_acl->Sbz1 = 0; replaced_acl->AclSize = size; replaced_acl->AceCount = count; replaced_acl->Sbz2 = 0; replaced_ace = (ACE_HEADER *)(replaced_acl + 1); if (old_sacl) { ace = (const ACE_HEADER *)(old_sacl + 1); for (i = 0; i < old_sacl->AceCount; i++, ace = ace_next( ace )) { if (ace->AceType == SYSTEM_MANDATORY_LABEL_ACE_TYPE) continue; memcpy( replaced_ace, ace, ace->AceSize ); replaced_ace = (ACE_HEADER *)ace_next( replaced_ace ); } } if (new_sacl) { ace = (const ACE_HEADER *)(new_sacl + 1); for (i = 0; i < new_sacl->AceCount; i++, ace = ace_next( ace )) { if (ace->AceType != SYSTEM_MANDATORY_LABEL_ACE_TYPE) continue; memcpy( replaced_ace, ace, ace->AceSize ); replaced_ace = (ACE_HEADER *)ace_next( replaced_ace ); } } return replaced_acl; } static inline int is_equal_luid( const LUID *luid1, const LUID *luid2 ) { return (luid1->LowPart == luid2->LowPart && luid1->HighPart == luid2->HighPart); } static inline void allocate_luid( luid_t *luid ) { prev_luid_value.low_part++; *luid = prev_luid_value; } DECL_HANDLER( allocate_locally_unique_id ) { allocate_luid( &reply->luid ); } static inline void luid_and_attr_from_privilege( LUID_AND_ATTRIBUTES *out, const struct privilege *in) { out->Luid = in->luid; out->Attributes = (in->enabled ? SE_PRIVILEGE_ENABLED : 0) | (in->def ? SE_PRIVILEGE_ENABLED_BY_DEFAULT : 0); } static struct privilege *privilege_add( struct token *token, const LUID *luid, int enabled ) { struct privilege *privilege = mem_alloc( sizeof(*privilege) ); if (privilege) { privilege->luid = *luid; privilege->def = privilege->enabled = (enabled != 0); list_add_tail( &token->privileges, &privilege->entry ); } return privilege; } static inline void privilege_remove( struct privilege *privilege ) { list_remove( &privilege->entry ); free( privilege ); } static void token_destroy( struct object *obj ) { struct token* token; struct list *cursor, *cursor_next; assert( obj->ops == &token_ops ); token = (struct token *)obj; free( token->user ); LIST_FOR_EACH_SAFE( cursor, cursor_next, &token->privileges ) { struct privilege *privilege = LIST_ENTRY( cursor, struct privilege, entry ); privilege_remove( privilege ); } LIST_FOR_EACH_SAFE( cursor, cursor_next, &token->groups ) { struct group *group = LIST_ENTRY( cursor, struct group, entry ); list_remove( &group->entry ); free( group ); } free( token->default_dacl ); } /* creates a new token. * groups may be NULL if group_count is 0. * privs may be NULL if priv_count is 0. * default_dacl may be NULL, indicating that all objects created by the user * are unsecured. * modified_id may be NULL, indicating that a new modified_id luid should be * allocated. */ static struct token *create_token( unsigned primary, const SID *user, const SID_AND_ATTRIBUTES *groups, unsigned int group_count, const LUID_AND_ATTRIBUTES *privs, unsigned int priv_count, const ACL *default_dacl, TOKEN_SOURCE source, const luid_t *modified_id, int impersonation_level, int elevation ) { struct token *token = alloc_object( &token_ops ); if (token) { unsigned int i; allocate_luid( &token->token_id ); if (modified_id) token->modified_id = *modified_id; else allocate_luid( &token->modified_id ); list_init( &token->privileges ); list_init( &token->groups ); token->primary = primary; /* primary tokens don't have impersonation levels */ if (primary) token->impersonation_level = -1; else token->impersonation_level = impersonation_level; token->default_dacl = NULL; token->primary_group = NULL; token->elevation = elevation; /* copy user */ token->user = memdup( user, security_sid_len( user )); if (!token->user) { release_object( token ); return NULL; } /* copy groups */ for (i = 0; i < group_count; i++) { size_t size = FIELD_OFFSET( struct group, sid.SubAuthority[((const SID *)groups[i].Sid)->SubAuthorityCount] ); struct group *group = mem_alloc( size ); if (!group) { release_object( token ); return NULL; } memcpy( &group->sid, groups[i].Sid, security_sid_len( groups[i].Sid )); group->enabled = TRUE; group->def = TRUE; group->logon = (groups[i].Attributes & SE_GROUP_LOGON_ID) != 0; group->mandatory = (groups[i].Attributes & SE_GROUP_MANDATORY) != 0; group->owner = (groups[i].Attributes & SE_GROUP_OWNER) != 0; group->resource = FALSE; group->deny_only = FALSE; list_add_tail( &token->groups, &group->entry ); /* Use first owner capable group as owner and primary group */ if (!token->primary_group && group->owner) { token->owner = &group->sid; token->primary_group = &group->sid; } } /* copy privileges */ for (i = 0; i < priv_count; i++) { /* note: we don't check uniqueness: the caller must make sure * privs doesn't contain any duplicate luids */ if (!privilege_add( token, &privs[i].Luid, privs[i].Attributes & SE_PRIVILEGE_ENABLED )) { release_object( token ); return NULL; } } if (default_dacl) { token->default_dacl = memdup( default_dacl, default_dacl->AclSize ); if (!token->default_dacl) { release_object( token ); return NULL; } } token->source = source; } return token; } static int filter_group( struct group *group, const SID *filter, unsigned int count ) { unsigned int i; for (i = 0; i < count; i++) { if (security_equal_sid( &group->sid, filter )) return 1; filter = (const SID *)((char *)filter + security_sid_len( filter )); } return 0; } static int filter_privilege( struct privilege *privilege, const LUID_AND_ATTRIBUTES *filter, unsigned int count ) { unsigned int i; for (i = 0; i < count; i++) { if (!memcmp( &privilege->luid, &filter[i].Luid, sizeof(LUID) )) return 1; } return 0; } struct token *token_duplicate( struct token *src_token, unsigned primary, int impersonation_level, const struct security_descriptor *sd, const LUID_AND_ATTRIBUTES *remove_privs, unsigned int remove_priv_count, const SID *remove_groups, unsigned int remove_group_count) { const luid_t *modified_id = primary || (impersonation_level == src_token->impersonation_level) ? &src_token->modified_id : NULL; struct token *token = NULL; struct privilege *privilege; struct group *group; if (!primary && (impersonation_level < SecurityAnonymous || impersonation_level > SecurityDelegation || (!src_token->primary && (impersonation_level > src_token->impersonation_level)))) { set_error( STATUS_BAD_IMPERSONATION_LEVEL ); return NULL; } token = create_token( primary, src_token->user, NULL, 0, NULL, 0, src_token->default_dacl, src_token->source, modified_id, impersonation_level, src_token->elevation ); if (!token) return token; /* copy groups */ token->primary_group = NULL; LIST_FOR_EACH_ENTRY( group, &src_token->groups, struct group, entry ) { size_t size = FIELD_OFFSET( struct group, sid.SubAuthority[group->sid.SubAuthorityCount] ); struct group *newgroup = mem_alloc( size ); if (!newgroup) { release_object( token ); return NULL; } memcpy( newgroup, group, size ); if (filter_group( group, remove_groups, remove_group_count )) { newgroup->enabled = 0; newgroup->def = 0; newgroup->deny_only = 1; } list_add_tail( &token->groups, &newgroup->entry ); if (src_token->primary_group == &group->sid) { token->owner = &newgroup->sid; token->primary_group = &newgroup->sid; } } assert( token->primary_group ); /* copy privileges */ LIST_FOR_EACH_ENTRY( privilege, &src_token->privileges, struct privilege, entry ) { if (filter_privilege( privilege, remove_privs, remove_priv_count )) continue; if (!privilege_add( token, &privilege->luid, privilege->enabled )) { release_object( token ); return NULL; } } if (sd) default_set_sd( &token->obj, sd, OWNER_SECURITY_INFORMATION | GROUP_SECURITY_INFORMATION | DACL_SECURITY_INFORMATION | SACL_SECURITY_INFORMATION ); return token; } static ACL *create_default_dacl( const SID *user ) { ACCESS_ALLOWED_ACE *aaa; ACL *default_dacl; SID *sid; size_t default_dacl_size = sizeof(ACL) + 2*(sizeof(ACCESS_ALLOWED_ACE) - sizeof(DWORD)) + sizeof(local_system_sid) + security_sid_len( user ); default_dacl = mem_alloc( default_dacl_size ); if (!default_dacl) return NULL; default_dacl->AclRevision = ACL_REVISION; default_dacl->Sbz1 = 0; default_dacl->AclSize = default_dacl_size; default_dacl->AceCount = 2; default_dacl->Sbz2 = 0; /* GENERIC_ALL for Local System */ aaa = (ACCESS_ALLOWED_ACE *)(default_dacl + 1); aaa->Header.AceType = ACCESS_ALLOWED_ACE_TYPE; aaa->Header.AceFlags = 0; aaa->Header.AceSize = (sizeof(ACCESS_ALLOWED_ACE) - sizeof(DWORD)) + sizeof(local_system_sid); aaa->Mask = GENERIC_ALL; sid = (SID *)&aaa->SidStart; memcpy( sid, &local_system_sid, sizeof(local_system_sid) ); /* GENERIC_ALL for specified user */ aaa = (ACCESS_ALLOWED_ACE *)((char *)aaa + aaa->Header.AceSize); aaa->Header.AceType = ACCESS_ALLOWED_ACE_TYPE; aaa->Header.AceFlags = 0; aaa->Header.AceSize = (sizeof(ACCESS_ALLOWED_ACE) - sizeof(DWORD)) + security_sid_len( user ); aaa->Mask = GENERIC_ALL; sid = (SID *)&aaa->SidStart; memcpy( sid, user, security_sid_len( user )); return default_dacl; } struct sid_data { SID_IDENTIFIER_AUTHORITY idauth; int count; unsigned int subauth[MAX_SUBAUTH_COUNT]; }; static struct security_descriptor *create_security_label_sd( struct token *token, PSID label_sid ) { size_t sid_len = security_sid_len( label_sid ), sacl_size, sd_size; SYSTEM_MANDATORY_LABEL_ACE *smla; struct security_descriptor *sd; ACL *sacl; sacl_size = sizeof(ACL) + FIELD_OFFSET(SYSTEM_MANDATORY_LABEL_ACE, SidStart) + sid_len; sd_size = sizeof(struct security_descriptor) + sacl_size; if (!(sd = mem_alloc( sd_size ))) return NULL; sd->control = SE_SACL_PRESENT; sd->owner_len = 0; sd->group_len = 0; sd->sacl_len = sacl_size; sd->dacl_len = 0; sacl = (ACL *)(sd + 1); sacl->AclRevision = ACL_REVISION; sacl->Sbz1 = 0; sacl->AclSize = sacl_size; sacl->AceCount = 1; sacl->Sbz2 = 0; smla = (SYSTEM_MANDATORY_LABEL_ACE *)(sacl + 1); smla->Header.AceType = SYSTEM_MANDATORY_LABEL_ACE_TYPE; smla->Header.AceFlags = 0; smla->Header.AceSize = FIELD_OFFSET(SYSTEM_MANDATORY_LABEL_ACE, SidStart) + sid_len; smla->Mask = SYSTEM_MANDATORY_LABEL_NO_WRITE_UP; memcpy( &smla->SidStart, label_sid, sid_len ); assert( sd_is_valid( sd, sd_size ) ); return sd; } int token_assign_label( struct token *token, PSID label ) { struct security_descriptor *sd; int ret = 0; if ((sd = create_security_label_sd( token, label ))) { ret = set_sd_defaults_from_token( &token->obj, sd, LABEL_SECURITY_INFORMATION, token ); free( sd ); } return ret; } struct token *get_token_obj( struct process *process, obj_handle_t handle, unsigned int access ) { return (struct token *)get_handle_obj( process, handle, access, &token_ops ); } struct token *token_create_admin( int elevation ) { struct token *token = NULL; static const SID_IDENTIFIER_AUTHORITY nt_authority = { SECURITY_NT_AUTHORITY }; static const unsigned int alias_admins_subauth[] = { SECURITY_BUILTIN_DOMAIN_RID, DOMAIN_ALIAS_RID_ADMINS }; static const unsigned int alias_users_subauth[] = { SECURITY_BUILTIN_DOMAIN_RID, DOMAIN_ALIAS_RID_USERS }; /* on Windows, this value changes every time the user logs on */ static const unsigned int logon_subauth[] = { SECURITY_LOGON_IDS_RID, 0, 1 /* FIXME: should be randomly generated when tokens are inherited by new processes */ }; PSID alias_admins_sid; PSID alias_users_sid; PSID logon_sid; const SID *user_sid = security_unix_uid_to_sid( getuid() ); ACL *default_dacl = create_default_dacl( user_sid ); alias_admins_sid = security_sid_alloc( &nt_authority, ARRAY_SIZE( alias_admins_subauth ), alias_admins_subauth ); alias_users_sid = security_sid_alloc( &nt_authority, ARRAY_SIZE( alias_users_subauth ), alias_users_subauth ); logon_sid = security_sid_alloc( &nt_authority, ARRAY_SIZE( logon_subauth ), logon_subauth ); if (alias_admins_sid && alias_users_sid && logon_sid && default_dacl) { const LUID_AND_ATTRIBUTES admin_privs[] = { { SeChangeNotifyPrivilege , SE_PRIVILEGE_ENABLED }, { SeTcbPrivilege , 0 }, { SeSecurityPrivilege , 0 }, { SeBackupPrivilege , 0 }, { SeRestorePrivilege , 0 }, { SeSystemtimePrivilege , 0 }, { SeShutdownPrivilege , 0 }, { SeRemoteShutdownPrivilege , 0 }, { SeTakeOwnershipPrivilege , 0 }, { SeDebugPrivilege , 0 }, { SeSystemEnvironmentPrivilege , 0 }, { SeSystemProfilePrivilege , 0 }, { SeProfileSingleProcessPrivilege, 0 }, { SeIncreaseBasePriorityPrivilege, 0 }, { SeLoadDriverPrivilege , SE_PRIVILEGE_ENABLED }, { SeCreatePagefilePrivilege , 0 }, { SeIncreaseQuotaPrivilege , 0 }, { SeUndockPrivilege , 0 }, { SeManageVolumePrivilege , 0 }, { SeImpersonatePrivilege , SE_PRIVILEGE_ENABLED }, { SeCreateGlobalPrivilege , SE_PRIVILEGE_ENABLED }, }; /* note: we don't include non-builtin groups here for the user - * telling us these is the job of a client-side program */ const SID_AND_ATTRIBUTES admin_groups[] = { { security_world_sid, SE_GROUP_ENABLED|SE_GROUP_ENABLED_BY_DEFAULT|SE_GROUP_MANDATORY }, { security_local_sid, SE_GROUP_ENABLED|SE_GROUP_ENABLED_BY_DEFAULT|SE_GROUP_MANDATORY }, { security_interactive_sid, SE_GROUP_ENABLED|SE_GROUP_ENABLED_BY_DEFAULT|SE_GROUP_MANDATORY }, { security_authenticated_user_sid, SE_GROUP_ENABLED|SE_GROUP_ENABLED_BY_DEFAULT|SE_GROUP_MANDATORY }, { security_domain_users_sid, SE_GROUP_ENABLED|SE_GROUP_ENABLED_BY_DEFAULT|SE_GROUP_MANDATORY|SE_GROUP_OWNER }, { alias_admins_sid, SE_GROUP_ENABLED|SE_GROUP_ENABLED_BY_DEFAULT|SE_GROUP_MANDATORY|SE_GROUP_OWNER }, { alias_users_sid, SE_GROUP_ENABLED|SE_GROUP_ENABLED_BY_DEFAULT|SE_GROUP_MANDATORY }, { logon_sid, SE_GROUP_ENABLED|SE_GROUP_ENABLED_BY_DEFAULT|SE_GROUP_MANDATORY|SE_GROUP_LOGON_ID }, }; static const TOKEN_SOURCE admin_source = {"SeMgr", {0, 0}}; token = create_token( TRUE, user_sid, admin_groups, ARRAY_SIZE( admin_groups ), admin_privs, ARRAY_SIZE( admin_privs ), default_dacl, admin_source, NULL, -1, elevation ); /* we really need a primary group */ assert( token->primary_group ); } free( logon_sid ); free( alias_admins_sid ); free( alias_users_sid ); free( default_dacl ); return token; } static struct privilege *token_find_privilege( struct token *token, const LUID *luid, int enabled_only ) { struct privilege *privilege; LIST_FOR_EACH_ENTRY( privilege, &token->privileges, struct privilege, entry ) { if (is_equal_luid( luid, &privilege->luid )) { if (enabled_only && !privilege->enabled) return NULL; return privilege; } } return NULL; } static unsigned int token_adjust_privileges( struct token *token, const LUID_AND_ATTRIBUTES *privs, unsigned int count, LUID_AND_ATTRIBUTES *mod_privs, unsigned int mod_privs_count ) { unsigned int i, modified_count = 0; /* mark as modified */ allocate_luid( &token->modified_id ); for (i = 0; i < count; i++) { struct privilege *privilege = token_find_privilege( token, &privs[i].Luid, FALSE ); if (!privilege) { set_error( STATUS_NOT_ALL_ASSIGNED ); continue; } if (privs[i].Attributes & SE_PRIVILEGE_REMOVED) privilege_remove( privilege ); else { /* save previous state for caller */ if (mod_privs_count) { luid_and_attr_from_privilege(mod_privs, privilege); mod_privs++; mod_privs_count--; modified_count++; } if (privs[i].Attributes & SE_PRIVILEGE_ENABLED) privilege->enabled = TRUE; else privilege->enabled = FALSE; } } return modified_count; } static void token_disable_privileges( struct token *token ) { struct privilege *privilege; /* mark as modified */ allocate_luid( &token->modified_id ); LIST_FOR_EACH_ENTRY( privilege, &token->privileges, struct privilege, entry ) privilege->enabled = FALSE; } int token_check_privileges( struct token *token, int all_required, const LUID_AND_ATTRIBUTES *reqprivs, unsigned int count, LUID_AND_ATTRIBUTES *usedprivs) { unsigned int i, enabled_count = 0; for (i = 0; i < count; i++) { struct privilege *privilege = token_find_privilege( token, &reqprivs[i].Luid, TRUE ); if (usedprivs) usedprivs[i] = reqprivs[i]; if (privilege && privilege->enabled) { enabled_count++; if (usedprivs) usedprivs[i].Attributes |= SE_PRIVILEGE_USED_FOR_ACCESS; } } if (all_required) return (enabled_count == count); else return (enabled_count > 0); } int token_sid_present( struct token *token, const SID *sid, int deny ) { struct group *group; if (security_equal_sid( token->user, sid )) return TRUE; LIST_FOR_EACH_ENTRY( group, &token->groups, struct group, entry ) { if (!group->enabled) continue; if (group->deny_only && !deny) continue; if (security_equal_sid( &group->sid, sid )) return TRUE; } return FALSE; } /* Checks access to a security descriptor. 'sd' must have been validated by * caller. It returns STATUS_SUCCESS if call succeeded or an error indicating * the reason. 'status' parameter will indicate if access is granted or denied. * * If both returned value and 'status' are STATUS_SUCCESS then access is granted. */ static unsigned int token_access_check( struct token *token, const struct security_descriptor *sd, unsigned int desired_access, LUID_AND_ATTRIBUTES *privs, unsigned int *priv_count, const generic_map_t *mapping, unsigned int *granted_access, unsigned int *status ) { unsigned int current_access = 0; unsigned int denied_access = 0; ULONG i; const ACL *dacl; int dacl_present; const ACE_HEADER *ace; const SID *owner; /* assume no access rights */ *granted_access = 0; /* fail if desired_access contains generic rights */ if (desired_access & (GENERIC_READ|GENERIC_WRITE|GENERIC_EXECUTE|GENERIC_ALL)) { if (priv_count) *priv_count = 0; return STATUS_GENERIC_NOT_MAPPED; } dacl = sd_get_dacl( sd, &dacl_present ); owner = sd_get_owner( sd ); if (!owner || !sd_get_group( sd )) { if (priv_count) *priv_count = 0; return STATUS_INVALID_SECURITY_DESCR; } /* 1: Grant desired access if the object is unprotected */ if (!dacl_present || !dacl) { if (priv_count) *priv_count = 0; if (desired_access & MAXIMUM_ALLOWED) *granted_access = mapping->all; else *granted_access = desired_access; return *status = STATUS_SUCCESS; } /* 2: Check if caller wants access to system security part. Note: access * is only granted if specifically asked for */ if (desired_access & ACCESS_SYSTEM_SECURITY) { const LUID_AND_ATTRIBUTES security_priv = { SeSecurityPrivilege, 0 }; LUID_AND_ATTRIBUTES retpriv = security_priv; if (token_check_privileges( token, TRUE, &security_priv, 1, &retpriv )) { if (priv_count) { /* assumes that there will only be one privilege to return */ if (*priv_count >= 1) { *priv_count = 1; *privs = retpriv; } else { *priv_count = 1; return STATUS_BUFFER_TOO_SMALL; } } current_access |= ACCESS_SYSTEM_SECURITY; if (desired_access == current_access) { *granted_access = current_access; return *status = STATUS_SUCCESS; } } else { if (priv_count) *priv_count = 0; *status = STATUS_PRIVILEGE_NOT_HELD; return STATUS_SUCCESS; } } else if (priv_count) *priv_count = 0; /* 3: Check whether the token is the owner */ /* NOTE: SeTakeOwnershipPrivilege is not checked for here - it is instead * checked when a "set owner" call is made, overriding the access rights * determined here. */ if (token_sid_present( token, owner, FALSE )) { current_access |= (READ_CONTROL | WRITE_DAC); if (desired_access == current_access) { *granted_access = current_access; return *status = STATUS_SUCCESS; } } /* 4: Grant rights according to the DACL */ ace = (const ACE_HEADER *)(dacl + 1); for (i = 0; i < dacl->AceCount; i++, ace = ace_next( ace )) { const ACCESS_ALLOWED_ACE *aa_ace; const ACCESS_DENIED_ACE *ad_ace; const SID *sid; if (ace->AceFlags & INHERIT_ONLY_ACE) continue; switch (ace->AceType) { case ACCESS_DENIED_ACE_TYPE: ad_ace = (const ACCESS_DENIED_ACE *)ace; sid = (const SID *)&ad_ace->SidStart; if (token_sid_present( token, sid, TRUE )) { unsigned int access = map_access( ad_ace->Mask, mapping ); if (desired_access & MAXIMUM_ALLOWED) denied_access |= access; else { denied_access |= (access & ~current_access); if (desired_access & access) goto done; } } break; case ACCESS_ALLOWED_ACE_TYPE: aa_ace = (const ACCESS_ALLOWED_ACE *)ace; sid = (const SID *)&aa_ace->SidStart; if (token_sid_present( token, sid, FALSE )) { unsigned int access = map_access( aa_ace->Mask, mapping ); if (desired_access & MAXIMUM_ALLOWED) current_access |= access; else current_access |= (access & ~denied_access); } break; } /* don't bother carrying on checking if we've already got all of * rights we need */ if (desired_access == *granted_access) break; } done: if (desired_access & MAXIMUM_ALLOWED) *granted_access = current_access & ~denied_access; else if ((current_access & desired_access) == desired_access) *granted_access = current_access & desired_access; else *granted_access = 0; *status = *granted_access ? STATUS_SUCCESS : STATUS_ACCESS_DENIED; return STATUS_SUCCESS; } const ACL *token_get_default_dacl( struct token *token ) { return token->default_dacl; } const SID *token_get_user( struct token *token ) { return token->user; } const SID *token_get_primary_group( struct token *token ) { return token->primary_group; } int check_object_access(struct token *token, struct object *obj, unsigned int *access) { generic_map_t mapping; unsigned int status; int res; if (!token) token = current->token ? current->token : current->process->token; mapping.all = obj->ops->map_access( obj, GENERIC_ALL ); if (!obj->sd) { if (*access & MAXIMUM_ALLOWED) *access = mapping.all; return TRUE; } mapping.read = obj->ops->map_access( obj, GENERIC_READ ); mapping.write = obj->ops->map_access( obj, GENERIC_WRITE ); mapping.exec = obj->ops->map_access( obj, GENERIC_EXECUTE ); res = token_access_check( token, obj->sd, *access, NULL, NULL, &mapping, access, &status ) == STATUS_SUCCESS && status == STATUS_SUCCESS; if (!res) set_error( STATUS_ACCESS_DENIED ); return res; } /* open a security token */ DECL_HANDLER(open_token) { if (req->flags & OPEN_TOKEN_THREAD) { struct thread *thread = get_thread_from_handle( req->handle, 0 ); if (thread) { if (thread->token) { if (!thread->token->primary && thread->token->impersonation_level <= SecurityAnonymous) set_error( STATUS_CANT_OPEN_ANONYMOUS ); else reply->token = alloc_handle( current->process, thread->token, req->access, req->attributes ); } else set_error( STATUS_NO_TOKEN ); release_object( thread ); } } else { struct process *process = get_process_from_handle( req->handle, 0 ); if (process) { if (process->token) reply->token = alloc_handle( current->process, process->token, req->access, req->attributes ); else set_error( STATUS_NO_TOKEN ); release_object( process ); } } } /* adjust the privileges held by a token */ DECL_HANDLER(adjust_token_privileges) { struct token *token; unsigned int access = TOKEN_ADJUST_PRIVILEGES; if (req->get_modified_state) access |= TOKEN_QUERY; if ((token = (struct token *)get_handle_obj( current->process, req->handle, access, &token_ops ))) { const LUID_AND_ATTRIBUTES *privs = get_req_data(); LUID_AND_ATTRIBUTES *modified_privs = NULL; unsigned int priv_count = get_req_data_size() / sizeof(LUID_AND_ATTRIBUTES); unsigned int modified_priv_count = 0; if (req->get_modified_state && !req->disable_all) { unsigned int i; /* count modified privs */ for (i = 0; i < priv_count; i++) { struct privilege *privilege = token_find_privilege( token, &privs[i].Luid, FALSE ); if (privilege && req->get_modified_state) modified_priv_count++; } reply->len = modified_priv_count; modified_priv_count = min( modified_priv_count, get_reply_max_size() / sizeof(*modified_privs) ); if (modified_priv_count) modified_privs = set_reply_data_size( modified_priv_count * sizeof(*modified_privs) ); } reply->len = modified_priv_count * sizeof(*modified_privs); if (req->disable_all) token_disable_privileges( token ); else token_adjust_privileges( token, privs, priv_count, modified_privs, modified_priv_count ); release_object( token ); } } /* retrieves the list of privileges that may be held be the token */ DECL_HANDLER(get_token_privileges) { struct token *token; if ((token = (struct token *)get_handle_obj( current->process, req->handle, TOKEN_QUERY, &token_ops ))) { int priv_count = 0; LUID_AND_ATTRIBUTES *privs; struct privilege *privilege; LIST_FOR_EACH_ENTRY( privilege, &token->privileges, struct privilege, entry ) priv_count++; reply->len = priv_count * sizeof(*privs); if (reply->len <= get_reply_max_size()) { privs = set_reply_data_size( priv_count * sizeof(*privs) ); if (privs) { int i = 0; LIST_FOR_EACH_ENTRY( privilege, &token->privileges, struct privilege, entry ) { luid_and_attr_from_privilege( &privs[i], privilege ); i++; } } } else set_error(STATUS_BUFFER_TOO_SMALL); release_object( token ); } } /* creates a duplicate of the token */ DECL_HANDLER(duplicate_token) { struct token *src_token; struct unicode_str name; const struct security_descriptor *sd; const struct object_attributes *objattr = get_req_object_attributes( &sd, &name, NULL ); if (!objattr) return; if ((src_token = (struct token *)get_handle_obj( current->process, req->handle, TOKEN_DUPLICATE, &token_ops ))) { struct token *token = token_duplicate( src_token, req->primary, req->impersonation_level, sd, NULL, 0, NULL, 0 ); if (token) { unsigned int access = req->access ? req->access : get_handle_access( current->process, req->handle ); reply->new_handle = alloc_handle_no_access_check( current->process, token, access, objattr->attributes ); release_object( token ); } release_object( src_token ); } } /* creates a restricted version of a token */ DECL_HANDLER(filter_token) { struct token *src_token; if ((src_token = (struct token *)get_handle_obj( current->process, req->handle, TOKEN_DUPLICATE, &token_ops ))) { const LUID_AND_ATTRIBUTES *filter_privileges = get_req_data(); unsigned int priv_count, group_count; const SID *filter_groups; struct token *token; priv_count = min( req->privileges_size, get_req_data_size() ) / sizeof(LUID_AND_ATTRIBUTES); filter_groups = (const SID *)((char *)filter_privileges + priv_count * sizeof(LUID_AND_ATTRIBUTES)); group_count = get_sid_count( filter_groups, get_req_data_size() - priv_count * sizeof(LUID_AND_ATTRIBUTES) ); token = token_duplicate( src_token, src_token->primary, src_token->impersonation_level, NULL, filter_privileges, priv_count, filter_groups, group_count ); if (token) { unsigned int access = get_handle_access( current->process, req->handle ); reply->new_handle = alloc_handle_no_access_check( current->process, token, access, 0 ); release_object( token ); } release_object( src_token ); } } /* checks the specified privileges are held by the token */ DECL_HANDLER(check_token_privileges) { struct token *token; if ((token = (struct token *)get_handle_obj( current->process, req->handle, TOKEN_QUERY, &token_ops ))) { unsigned int count = get_req_data_size() / sizeof(LUID_AND_ATTRIBUTES); if (!token->primary && token->impersonation_level <= SecurityAnonymous) set_error( STATUS_BAD_IMPERSONATION_LEVEL ); else if (get_reply_max_size() >= count * sizeof(LUID_AND_ATTRIBUTES)) { LUID_AND_ATTRIBUTES *usedprivs = set_reply_data_size( count * sizeof(*usedprivs) ); reply->has_privileges = token_check_privileges( token, req->all_required, get_req_data(), count, usedprivs ); } else set_error( STATUS_BUFFER_OVERFLOW ); release_object( token ); } } /* checks that a user represented by a token is allowed to access an object * represented by a security descriptor */ DECL_HANDLER(access_check) { data_size_t sd_size = get_req_data_size(); const struct security_descriptor *sd = get_req_data(); struct token *token; if (!sd_is_valid( sd, sd_size )) { set_error( STATUS_ACCESS_VIOLATION ); return; } if ((token = (struct token *)get_handle_obj( current->process, req->handle, TOKEN_QUERY, &token_ops ))) { unsigned int status; LUID_AND_ATTRIBUTES priv; unsigned int priv_count = 1; memset(&priv, 0, sizeof(priv)); /* only impersonation tokens may be used with this function */ if (token->primary) { set_error( STATUS_NO_IMPERSONATION_TOKEN ); release_object( token ); return; } /* anonymous impersonation tokens can't be used */ if (token->impersonation_level <= SecurityAnonymous) { set_error( STATUS_BAD_IMPERSONATION_LEVEL ); release_object( token ); return; } status = token_access_check( token, sd, req->desired_access, &priv, &priv_count, &req->mapping, &reply->access_granted, &reply->access_status ); reply->privileges_len = priv_count*sizeof(LUID_AND_ATTRIBUTES); if ((priv_count > 0) && (reply->privileges_len <= get_reply_max_size())) { LUID_AND_ATTRIBUTES *privs = set_reply_data_size( priv_count * sizeof(*privs) ); memcpy( privs, &priv, sizeof(priv) ); } set_error( status ); release_object( token ); } } /* retrieves an SID from the token */ DECL_HANDLER(get_token_sid) { struct token *token; reply->sid_len = 0; if ((token = (struct token *)get_handle_obj( current->process, req->handle, TOKEN_QUERY, &token_ops ))) { const SID *sid = NULL; switch (req->which_sid) { case TokenUser: assert(token->user); sid = token->user; break; case TokenPrimaryGroup: sid = token->primary_group; break; case TokenOwner: sid = token->owner; break; case TokenLogonSid: sid = (const SID *)&builtin_logon_sid; break; default: set_error( STATUS_INVALID_PARAMETER ); break; } if (sid) { reply->sid_len = security_sid_len( sid ); if (reply->sid_len <= get_reply_max_size()) set_reply_data( sid, reply->sid_len ); else set_error( STATUS_BUFFER_TOO_SMALL ); } release_object( token ); } } /* retrieves the groups that the user represented by the token belongs to */ DECL_HANDLER(get_token_groups) { struct token *token; reply->user_len = 0; if ((token = (struct token *)get_handle_obj( current->process, req->handle, TOKEN_QUERY, &token_ops ))) { size_t size_needed = sizeof(struct token_groups); size_t sid_size = 0; unsigned int group_count = 0; const struct group *group; LIST_FOR_EACH_ENTRY( group, &token->groups, const struct group, entry ) { group_count++; sid_size += security_sid_len( &group->sid ); } size_needed += sid_size; /* attributes size */ size_needed += sizeof(unsigned int) * group_count; /* reply buffer contains size_needed bytes formatted as: unsigned int count; unsigned int attrib[count]; char sid_data[]; user_len includes extra data needed for TOKEN_GROUPS representation, required caller buffer size calculated here to avoid extra server call */ reply->user_len = FIELD_OFFSET( TOKEN_GROUPS, Groups[group_count] ) + sid_size; if (reply->user_len <= get_reply_max_size()) { struct token_groups *tg = set_reply_data_size( size_needed ); if (tg) { unsigned int *attr_ptr = (unsigned int *)(tg + 1); SID *sid_ptr = (SID *)(attr_ptr + group_count); tg->count = group_count; LIST_FOR_EACH_ENTRY( group, &token->groups, const struct group, entry ) { *attr_ptr = 0; if (group->mandatory) *attr_ptr |= SE_GROUP_MANDATORY; if (group->def) *attr_ptr |= SE_GROUP_ENABLED_BY_DEFAULT; if (group->enabled) *attr_ptr |= SE_GROUP_ENABLED; if (group->owner) *attr_ptr |= SE_GROUP_OWNER; if (group->deny_only) *attr_ptr |= SE_GROUP_USE_FOR_DENY_ONLY; if (group->resource) *attr_ptr |= SE_GROUP_RESOURCE; if (group->logon) *attr_ptr |= SE_GROUP_LOGON_ID; memcpy(sid_ptr, &group->sid, security_sid_len( &group->sid )); sid_ptr = (SID *)((char *)sid_ptr + security_sid_len( &group->sid )); attr_ptr++; } } } else set_error( STATUS_BUFFER_TOO_SMALL ); release_object( token ); } } DECL_HANDLER(get_token_info) { struct token *token; if ((token = (struct token *)get_handle_obj( current->process, req->handle, TOKEN_QUERY, &token_ops ))) { reply->token_id = token->token_id; reply->modified_id = token->modified_id; reply->primary = token->primary; reply->impersonation_level = token->impersonation_level; reply->elevation = token->elevation; reply->group_count = list_count( &token->groups ); reply->privilege_count = list_count( &token->privileges ); release_object( token ); } } DECL_HANDLER(get_token_default_dacl) { struct token *token; reply->acl_len = 0; if ((token = (struct token *)get_handle_obj( current->process, req->handle, TOKEN_QUERY, &token_ops ))) { if (token->default_dacl) reply->acl_len = token->default_dacl->AclSize; if (reply->acl_len <= get_reply_max_size()) { ACL *acl_reply = set_reply_data_size( reply->acl_len ); if (acl_reply) memcpy( acl_reply, token->default_dacl, reply->acl_len ); } else set_error( STATUS_BUFFER_TOO_SMALL ); release_object( token ); } } DECL_HANDLER(set_token_default_dacl) { struct token *token; if ((token = (struct token *)get_handle_obj( current->process, req->handle, TOKEN_ADJUST_DEFAULT, &token_ops ))) { const ACL *acl = get_req_data(); unsigned int acl_size = get_req_data_size(); free( token->default_dacl ); token->default_dacl = NULL; if (acl_size) token->default_dacl = memdup( acl, acl_size ); release_object( token ); } } DECL_HANDLER(create_linked_token) { struct token *token, *linked; int elevation; if ((token = (struct token *)get_handle_obj( current->process, req->handle, TOKEN_QUERY, &token_ops ))) { switch (token->elevation) { case TokenElevationTypeFull: elevation = TokenElevationTypeLimited; break; case TokenElevationTypeLimited: elevation = TokenElevationTypeFull; break; default: release_object( token ); return; } if ((linked = token_create_admin( elevation ))) { reply->linked = alloc_handle( current->process, linked, TOKEN_ALL_ACCESS, 0 ); release_object( linked ); } release_object( token ); } }