/* * Copyright 2001 Nikos Mavroyanopoulos * Copyright 2004 Hans Leidekker * Copyright 2004 Filip Navara * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA */ #include <stdarg.h> #include "windef.h" /* SHA1 algorithm * * Based on public domain SHA code by Steve Reid <steve@edmweb.com> */ typedef struct { ULONG Unknown[6]; ULONG State[5]; ULONG Count[2]; UCHAR Buffer[64]; } SHA_CTX, *PSHA_CTX; #define rol(value, bits) (((value) << (bits)) | ((value) >> (32 - (bits)))) /* FIXME: This definition of DWORD2BE is little endian specific! */ #define DWORD2BE(x) (((x) >> 24) & 0xff) | (((x) >> 8) & 0xff00) | (((x) << 8) & 0xff0000) | (((x) << 24) & 0xff000000); /* FIXME: This definition of blk0 is little endian specific! */ #define blk0(i) (Block[i] = (rol(Block[i],24)&0xFF00FF00)|(rol(Block[i],8)&0x00FF00FF)) #define blk1(i) (Block[i&15] = rol(Block[(i+13)&15]^Block[(i+8)&15]^Block[(i+2)&15]^Block[i&15],1)) #define f1(x,y,z) (z^(x&(y^z))) #define f2(x,y,z) (x^y^z) #define f3(x,y,z) ((x&y)|(z&(x|y))) #define f4(x,y,z) (x^y^z) /* (R0+R1), R2, R3, R4 are the different operations used in SHA1 */ #define R0(v,w,x,y,z,i) z+=f1(w,x,y)+blk0(i)+0x5A827999+rol(v,5);w=rol(w,30); #define R1(v,w,x,y,z,i) z+=f1(w,x,y)+blk1(i)+0x5A827999+rol(v,5);w=rol(w,30); #define R2(v,w,x,y,z,i) z+=f2(w,x,y)+blk1(i)+0x6ED9EBA1+rol(v,5);w=rol(w,30); #define R3(v,w,x,y,z,i) z+=f3(w,x,y)+blk1(i)+0x8F1BBCDC+rol(v,5);w=rol(w,30); #define R4(v,w,x,y,z,i) z+=f4(w,x,y)+blk1(i)+0xCA62C1D6+rol(v,5);w=rol(w,30); /* Hash a single 512-bit block. This is the core of the algorithm. */ static void SHA1Transform(ULONG State[5], UCHAR Buffer[64]) { ULONG a, b, c, d, e; ULONG *Block; Block = (ULONG*)Buffer; /* Copy Context->State[] to working variables */ a = State[0]; b = State[1]; c = State[2]; d = State[3]; e = State[4]; /* 4 rounds of 20 operations each. Loop unrolled. */ R0(a,b,c,d,e, 0); R0(e,a,b,c,d, 1); R0(d,e,a,b,c, 2); R0(c,d,e,a,b, 3); R0(b,c,d,e,a, 4); R0(a,b,c,d,e, 5); R0(e,a,b,c,d, 6); R0(d,e,a,b,c, 7); R0(c,d,e,a,b, 8); R0(b,c,d,e,a, 9); R0(a,b,c,d,e,10); R0(e,a,b,c,d,11); R0(d,e,a,b,c,12); R0(c,d,e,a,b,13); R0(b,c,d,e,a,14); R0(a,b,c,d,e,15); R1(e,a,b,c,d,16); R1(d,e,a,b,c,17); R1(c,d,e,a,b,18); R1(b,c,d,e,a,19); R2(a,b,c,d,e,20); R2(e,a,b,c,d,21); R2(d,e,a,b,c,22); R2(c,d,e,a,b,23); R2(b,c,d,e,a,24); R2(a,b,c,d,e,25); R2(e,a,b,c,d,26); R2(d,e,a,b,c,27); R2(c,d,e,a,b,28); R2(b,c,d,e,a,29); R2(a,b,c,d,e,30); R2(e,a,b,c,d,31); R2(d,e,a,b,c,32); R2(c,d,e,a,b,33); R2(b,c,d,e,a,34); R2(a,b,c,d,e,35); R2(e,a,b,c,d,36); R2(d,e,a,b,c,37); R2(c,d,e,a,b,38); R2(b,c,d,e,a,39); R3(a,b,c,d,e,40); R3(e,a,b,c,d,41); R3(d,e,a,b,c,42); R3(c,d,e,a,b,43); R3(b,c,d,e,a,44); R3(a,b,c,d,e,45); R3(e,a,b,c,d,46); R3(d,e,a,b,c,47); R3(c,d,e,a,b,48); R3(b,c,d,e,a,49); R3(a,b,c,d,e,50); R3(e,a,b,c,d,51); R3(d,e,a,b,c,52); R3(c,d,e,a,b,53); R3(b,c,d,e,a,54); R3(a,b,c,d,e,55); R3(e,a,b,c,d,56); R3(d,e,a,b,c,57); R3(c,d,e,a,b,58); R3(b,c,d,e,a,59); R4(a,b,c,d,e,60); R4(e,a,b,c,d,61); R4(d,e,a,b,c,62); R4(c,d,e,a,b,63); R4(b,c,d,e,a,64); R4(a,b,c,d,e,65); R4(e,a,b,c,d,66); R4(d,e,a,b,c,67); R4(c,d,e,a,b,68); R4(b,c,d,e,a,69); R4(a,b,c,d,e,70); R4(e,a,b,c,d,71); R4(d,e,a,b,c,72); R4(c,d,e,a,b,73); R4(b,c,d,e,a,74); R4(a,b,c,d,e,75); R4(e,a,b,c,d,76); R4(d,e,a,b,c,77); R4(c,d,e,a,b,78); R4(b,c,d,e,a,79); /* Add the working variables back into Context->State[] */ State[0] += a; State[1] += b; State[2] += c; State[3] += d; State[4] += e; /* Wipe variables */ a = b = c = d = e = 0; } /****************************************************************************** * A_SHAInit (ntdll.@) * * Initialize a SHA context structure. * * PARAMS * Context [O] SHA context * * RETURNS * Nothing */ void WINAPI A_SHAInit(PSHA_CTX Context) { /* SHA1 initialization constants */ Context->State[0] = 0x67452301; Context->State[1] = 0xEFCDAB89; Context->State[2] = 0x98BADCFE; Context->State[3] = 0x10325476; Context->State[4] = 0xC3D2E1F0; Context->Count[0] = Context->Count[1] = 0; } /****************************************************************************** * A_SHAUpdate (ntdll.@) * * Update a SHA context with a hashed data from supplied buffer. * * PARAMS * Context [O] SHA context * Buffer [I] hashed data * BufferSize [I] hashed data size * * RETURNS * Nothing */ void WINAPI A_SHAUpdate(PSHA_CTX Context, const unsigned char *Buffer, UINT BufferSize) { ULONG BufferContentSize; BufferContentSize = Context->Count[1] & 63; Context->Count[1] += BufferSize; if (Context->Count[1] < BufferSize) Context->Count[0]++; Context->Count[0] += (BufferSize >> 29); if (BufferContentSize + BufferSize < 64) { RtlCopyMemory(&Context->Buffer[BufferContentSize], Buffer, BufferSize); } else { while (BufferContentSize + BufferSize >= 64) { RtlCopyMemory(Context->Buffer + BufferContentSize, Buffer, 64 - BufferContentSize); Buffer += 64 - BufferContentSize; BufferSize -= 64 - BufferContentSize; SHA1Transform(Context->State, Context->Buffer); BufferContentSize = 0; } RtlCopyMemory(Context->Buffer + BufferContentSize, Buffer, BufferSize); } } /****************************************************************************** * A_SHAFinal (ntdll.@) * * Finalize SHA context and return the resulting hash. * * PARAMS * Context [I/O] SHA context * Result [O] resulting hash * * RETURNS * Nothing */ void WINAPI A_SHAFinal(PSHA_CTX Context, PULONG Result) { INT Pad, Index; UCHAR Buffer[72]; ULONG *Count; ULONG BufferContentSize, LengthHi, LengthLo; BufferContentSize = Context->Count[1] & 63; if (BufferContentSize >= 56) Pad = 56 + 64 - BufferContentSize; else Pad = 56 - BufferContentSize; LengthHi = (Context->Count[0] << 3) | (Context->Count[1] >> (32 - 3)); LengthLo = (Context->Count[1] << 3); RtlZeroMemory(Buffer + 1, Pad - 1); Buffer[0] = 0x80; Count = (ULONG*)(Buffer + Pad); Count[0] = DWORD2BE(LengthHi); Count[1] = DWORD2BE(LengthLo); A_SHAUpdate(Context, Buffer, Pad + 8); for (Index = 0; Index < 5; Index++) Result[Index] = DWORD2BE(Context->State[Index]); A_SHAInit(Context); } /* MD4 algorithm * * This code implements the MD4 message-digest algorithm. * It is based on code in the public domain written by Colin * Plumb in 1993. The algorithm is due to Ron Rivest. * * Equivalent code is available from RSA Data Security, Inc. * This code has been tested against that, and is equivalent, * except that you don't need to include two pages of legalese * with every copy. */ typedef struct { unsigned int buf[4]; unsigned int i[2]; unsigned char in[64]; unsigned char digest[16]; } MD4_CTX; #define F( x, y, z ) (((x) & (y)) | ((~x) & (z))) #define G( x, y, z ) (((x) & (y)) | ((x) & (z)) | ((y) & (z))) #define H( x, y, z ) ((x) ^ (y) ^ (z)) #define FF( a, b, c, d, x, s ) { \ (a) += F( (b), (c), (d) ) + (x); \ (a) = rol( (a), (s) ); \ } #define GG( a, b, c, d, x, s ) { \ (a) += G( (b), (c), (d) ) + (x) + (unsigned int)0x5a827999; \ (a) = rol( (a), (s) ); \ } #define HH( a, b, c, d, x, s ) { \ (a) += H( (b), (c), (d) ) + (x) + (unsigned int)0x6ed9eba1; \ (a) = rol( (a), (s) ); \ } static void MD4Transform( unsigned int buf[4], const unsigned int in[16] ) { unsigned int a, b, c, d; a = buf[0]; b = buf[1]; c = buf[2]; d = buf[3]; FF( a, b, c, d, in[0], 3 ); FF( d, a, b, c, in[1], 7 ); FF( c, d, a, b, in[2], 11 ); FF( b, c, d, a, in[3], 19 ); FF( a, b, c, d, in[4], 3 ); FF( d, a, b, c, in[5], 7 ); FF( c, d, a, b, in[6], 11 ); FF( b, c, d, a, in[7], 19 ); FF( a, b, c, d, in[8], 3 ); FF( d, a, b, c, in[9], 7 ); FF( c, d, a, b, in[10], 11 ); FF( b, c, d, a, in[11], 19 ); FF( a, b, c, d, in[12], 3 ); FF( d, a, b, c, in[13], 7 ); FF( c, d, a, b, in[14], 11 ); FF( b, c, d, a, in[15], 19 ); GG( a, b, c, d, in[0], 3 ); GG( d, a, b, c, in[4], 5 ); GG( c, d, a, b, in[8], 9 ); GG( b, c, d, a, in[12], 13 ); GG( a, b, c, d, in[1], 3 ); GG( d, a, b, c, in[5], 5 ); GG( c, d, a, b, in[9], 9 ); GG( b, c, d, a, in[13], 13 ); GG( a, b, c, d, in[2], 3 ); GG( d, a, b, c, in[6], 5 ); GG( c, d, a, b, in[10], 9 ); GG( b, c, d, a, in[14], 13 ); GG( a, b, c, d, in[3], 3 ); GG( d, a, b, c, in[7], 5 ); GG( c, d, a, b, in[11], 9 ); GG( b, c, d, a, in[15], 13 ); HH( a, b, c, d, in[0], 3 ); HH( d, a, b, c, in[8], 9 ); HH( c, d, a, b, in[4], 11 ); HH( b, c, d, a, in[12], 15 ); HH( a, b, c, d, in[2], 3 ); HH( d, a, b, c, in[10], 9 ); HH( c, d, a, b, in[6], 11 ); HH( b, c, d, a, in[14], 15 ); HH( a, b, c, d, in[1], 3 ); HH( d, a, b, c, in[9], 9 ); HH( c, d, a, b, in[5], 11 ); HH( b, c, d, a, in[13], 15 ); HH( a, b, c, d, in[3], 3 ); HH( d, a, b, c, in[11], 9 ); HH( c, d, a, b, in[7], 11 ); HH( b, c, d, a, in[15], 15 ); buf[0] += a; buf[1] += b; buf[2] += c; buf[3] += d; } /* * Note: this code is harmless on little-endian machines. */ static void byteReverse( unsigned char *buf, unsigned longs ) { unsigned int t; do { t = ((unsigned)buf[3] << 8 | buf[2]) << 16 | ((unsigned)buf[1] << 8 | buf[0]); *(unsigned int *)buf = t; buf += 4; } while (--longs); } /****************************************************************************** * MD4Init (ntdll.@) * * Start MD4 accumulation. Set bit count to 0 and buffer to mysterious * initialization constants. */ void WINAPI MD4Init( MD4_CTX *ctx ) { ctx->buf[0] = 0x67452301; ctx->buf[1] = 0xefcdab89; ctx->buf[2] = 0x98badcfe; ctx->buf[3] = 0x10325476; ctx->i[0] = ctx->i[1] = 0; } /****************************************************************************** * MD4Update (ntdll.@) * * Update context to reflect the concatenation of another buffer full * of bytes. */ void WINAPI MD4Update( MD4_CTX *ctx, const unsigned char *buf, unsigned int len ) { unsigned int t; /* Update bitcount */ t = ctx->i[0]; if ((ctx->i[0] = t + (len << 3)) < t) ctx->i[1]++; /* Carry from low to high */ ctx->i[1] += len >> 29; t = (t >> 3) & 0x3f; /* Handle any leading odd-sized chunks */ if (t) { unsigned char *p = (unsigned char *)ctx->in + t; t = 64 - t; if (len < t) { memcpy( p, buf, len ); return; } memcpy( p, buf, t ); byteReverse( ctx->in, 16 ); MD4Transform( ctx->buf, (unsigned int *)ctx->in ); buf += t; len -= t; } /* Process data in 64-byte chunks */ while (len >= 64) { memcpy( ctx->in, buf, 64 ); byteReverse( ctx->in, 16 ); MD4Transform( ctx->buf, (unsigned int *)ctx->in ); buf += 64; len -= 64; } /* Handle any remaining bytes of data. */ memcpy( ctx->in, buf, len ); } /****************************************************************************** * MD4Final (ntdll.@) * * Final wrapup - pad to 64-byte boundary with the bit pattern * 1 0* (64-bit count of bits processed, MSB-first) */ void WINAPI MD4Final( MD4_CTX *ctx ) { unsigned int count; unsigned char *p; /* Compute number of bytes mod 64 */ count = (ctx->i[0] >> 3) & 0x3F; /* Set the first char of padding to 0x80. This is safe since there is always at least one byte free */ p = ctx->in + count; *p++ = 0x80; /* Bytes of padding needed to make 64 bytes */ count = 64 - 1 - count; /* Pad out to 56 mod 64 */ if (count < 8) { /* Two lots of padding: Pad the first block to 64 bytes */ memset( p, 0, count ); byteReverse( ctx->in, 16 ); MD4Transform( ctx->buf, (unsigned int *)ctx->in ); /* Now fill the next block with 56 bytes */ memset( ctx->in, 0, 56 ); } else { /* Pad block to 56 bytes */ memset( p, 0, count - 8 ); } byteReverse( ctx->in, 14 ); /* Append length in bits and transform */ ((unsigned int *)ctx->in)[14] = ctx->i[0]; ((unsigned int *)ctx->in)[15] = ctx->i[1]; MD4Transform( ctx->buf, (unsigned int *)ctx->in ); byteReverse( (unsigned char *)ctx->buf, 4 ); memcpy( ctx->digest, ctx->buf, 16 ); } /* MD5 algorithm * * This code implements the MD5 message-digest algorithm. * It is based on code in the public domain written by Colin * Plumb in 1993. The algorithm is due to Ron Rivest. * * Equivalent code is available from RSA Data Security, Inc. * This code has been tested against that, and is equivalent, * except that you don't need to include two pages of legalese * with every copy. */ typedef struct { unsigned int i[2]; unsigned int buf[4]; unsigned char in[64]; unsigned char digest[16]; } MD5_CTX; /* #define F1( x, y, z ) (x & y | ~x & z) */ #define F1( x, y, z ) (z ^ (x & (y ^ z))) #define F2( x, y, z ) F1( z, x, y ) #define F3( x, y, z ) (x ^ y ^ z) #define F4( x, y, z ) (y ^ (x | ~z)) /* This is the central step in the MD5 algorithm. */ #define MD5STEP( f, w, x, y, z, data, s ) \ ( w += f( x, y, z ) + data, w = w << s | w >> (32 - s), w += x ) /* * The core of the MD5 algorithm, this alters an existing MD5 hash to * reflect the addition of 16 longwords of new data. MD5Update blocks * the data and converts bytes into longwords for this routine. */ static void MD5Transform( unsigned int buf[4], const unsigned int in[16] ) { unsigned int a, b, c, d; a = buf[0]; b = buf[1]; c = buf[2]; d = buf[3]; MD5STEP( F1, a, b, c, d, in[0] + 0xd76aa478, 7 ); MD5STEP( F1, d, a, b, c, in[1] + 0xe8c7b756, 12 ); MD5STEP( F1, c, d, a, b, in[2] + 0x242070db, 17 ); MD5STEP( F1, b, c, d, a, in[3] + 0xc1bdceee, 22 ); MD5STEP( F1, a, b, c, d, in[4] + 0xf57c0faf, 7 ); MD5STEP( F1, d, a, b, c, in[5] + 0x4787c62a, 12 ); MD5STEP( F1, c, d, a, b, in[6] + 0xa8304613, 17 ); MD5STEP( F1, b, c, d, a, in[7] + 0xfd469501, 22 ); MD5STEP( F1, a, b, c, d, in[8] + 0x698098d8, 7 ); MD5STEP( F1, d, a, b, c, in[9] + 0x8b44f7af, 12 ); MD5STEP( F1, c, d, a, b, in[10] + 0xffff5bb1, 17 ); MD5STEP( F1, b, c, d, a, in[11] + 0x895cd7be, 22 ); MD5STEP( F1, a, b, c, d, in[12] + 0x6b901122, 7 ); MD5STEP( F1, d, a, b, c, in[13] + 0xfd987193, 12 ); MD5STEP( F1, c, d, a, b, in[14] + 0xa679438e, 17 ); MD5STEP( F1, b, c, d, a, in[15] + 0x49b40821, 22 ); MD5STEP( F2, a, b, c, d, in[1] + 0xf61e2562, 5 ); MD5STEP( F2, d, a, b, c, in[6] + 0xc040b340, 9 ); MD5STEP( F2, c, d, a, b, in[11] + 0x265e5a51, 14 ); MD5STEP( F2, b, c, d, a, in[0] + 0xe9b6c7aa, 20 ); MD5STEP( F2, a, b, c, d, in[5] + 0xd62f105d, 5 ); MD5STEP( F2, d, a, b, c, in[10] + 0x02441453, 9 ); MD5STEP( F2, c, d, a, b, in[15] + 0xd8a1e681, 14 ); MD5STEP( F2, b, c, d, a, in[4] + 0xe7d3fbc8, 20 ); MD5STEP( F2, a, b, c, d, in[9] + 0x21e1cde6, 5 ); MD5STEP( F2, d, a, b, c, in[14] + 0xc33707d6, 9 ); MD5STEP( F2, c, d, a, b, in[3] + 0xf4d50d87, 14 ); MD5STEP( F2, b, c, d, a, in[8] + 0x455a14ed, 20 ); MD5STEP( F2, a, b, c, d, in[13] + 0xa9e3e905, 5 ); MD5STEP( F2, d, a, b, c, in[2] + 0xfcefa3f8, 9 ); MD5STEP( F2, c, d, a, b, in[7] + 0x676f02d9, 14 ); MD5STEP( F2, b, c, d, a, in[12] + 0x8d2a4c8a, 20 ); MD5STEP( F3, a, b, c, d, in[5] + 0xfffa3942, 4 ); MD5STEP( F3, d, a, b, c, in[8] + 0x8771f681, 11 ); MD5STEP( F3, c, d, a, b, in[11] + 0x6d9d6122, 16 ); MD5STEP( F3, b, c, d, a, in[14] + 0xfde5380c, 23 ); MD5STEP( F3, a, b, c, d, in[1] + 0xa4beea44, 4 ); MD5STEP( F3, d, a, b, c, in[4] + 0x4bdecfa9, 11 ); MD5STEP( F3, c, d, a, b, in[7] + 0xf6bb4b60, 16 ); MD5STEP( F3, b, c, d, a, in[10] + 0xbebfbc70, 23 ); MD5STEP( F3, a, b, c, d, in[13] + 0x289b7ec6, 4 ); MD5STEP( F3, d, a, b, c, in[0] + 0xeaa127fa, 11 ); MD5STEP( F3, c, d, a, b, in[3] + 0xd4ef3085, 16 ); MD5STEP( F3, b, c, d, a, in[6] + 0x04881d05, 23 ); MD5STEP( F3, a, b, c, d, in[9] + 0xd9d4d039, 4 ); MD5STEP( F3, d, a, b, c, in[12] + 0xe6db99e5, 11 ); MD5STEP( F3, c, d, a, b, in[15] + 0x1fa27cf8, 16 ); MD5STEP( F3, b, c, d, a, in[2] + 0xc4ac5665, 23 ); MD5STEP( F4, a, b, c, d, in[0] + 0xf4292244, 6 ); MD5STEP( F4, d, a, b, c, in[7] + 0x432aff97, 10 ); MD5STEP( F4, c, d, a, b, in[14] + 0xab9423a7, 15 ); MD5STEP( F4, b, c, d, a, in[5] + 0xfc93a039, 21 ); MD5STEP( F4, a, b, c, d, in[12] + 0x655b59c3, 6 ); MD5STEP( F4, d, a, b, c, in[3] + 0x8f0ccc92, 10 ); MD5STEP( F4, c, d, a, b, in[10] + 0xffeff47d, 15 ); MD5STEP( F4, b, c, d, a, in[1] + 0x85845dd1, 21 ); MD5STEP( F4, a, b, c, d, in[8] + 0x6fa87e4f, 6 ); MD5STEP( F4, d, a, b, c, in[15] + 0xfe2ce6e0, 10 ); MD5STEP( F4, c, d, a, b, in[6] + 0xa3014314, 15 ); MD5STEP( F4, b, c, d, a, in[13] + 0x4e0811a1, 21 ); MD5STEP( F4, a, b, c, d, in[4] + 0xf7537e82, 6 ); MD5STEP( F4, d, a, b, c, in[11] + 0xbd3af235, 10 ); MD5STEP( F4, c, d, a, b, in[2] + 0x2ad7d2bb, 15 ); MD5STEP( F4, b, c, d, a, in[9] + 0xeb86d391, 21 ); buf[0] += a; buf[1] += b; buf[2] += c; buf[3] += d; } /****************************************************************************** * MD5Init (ntdll.@) * * Start MD5 accumulation. Set bit count to 0 and buffer to mysterious * initialization constants. */ void WINAPI MD5Init( MD5_CTX *ctx ) { ctx->buf[0] = 0x67452301; ctx->buf[1] = 0xefcdab89; ctx->buf[2] = 0x98badcfe; ctx->buf[3] = 0x10325476; ctx->i[0] = ctx->i[1] = 0; } /****************************************************************************** * MD5Update (ntdll.@) * * Update context to reflect the concatenation of another buffer full * of bytes. */ void WINAPI MD5Update( MD5_CTX *ctx, const unsigned char *buf, unsigned int len ) { register unsigned int t; /* Update bitcount */ t = ctx->i[0]; if ((ctx->i[0] = t + (len << 3)) < t) ctx->i[1]++; /* Carry from low to high */ ctx->i[1] += len >> 29; t = (t >> 3) & 0x3f; /* Handle any leading odd-sized chunks */ if (t) { unsigned char *p = (unsigned char *)ctx->in + t; t = 64 - t; if (len < t) { memcpy( p, buf, len ); return; } memcpy( p, buf, t ); byteReverse( ctx->in, 16 ); MD5Transform( ctx->buf, (unsigned int *)ctx->in ); buf += t; len -= t; } /* Process data in 64-byte chunks */ while (len >= 64) { memcpy( ctx->in, buf, 64 ); byteReverse( ctx->in, 16 ); MD5Transform( ctx->buf, (unsigned int *)ctx->in ); buf += 64; len -= 64; } /* Handle any remaining bytes of data. */ memcpy( ctx->in, buf, len ); } /****************************************************************************** * MD5Final (ntdll.@) * * Final wrapup - pad to 64-byte boundary with the bit pattern * 1 0* (64-bit count of bits processed, MSB-first) */ void WINAPI MD5Final( MD5_CTX *ctx ) { unsigned int count; unsigned char *p; /* Compute number of bytes mod 64 */ count = (ctx->i[0] >> 3) & 0x3F; /* Set the first char of padding to 0x80. This is safe since there is always at least one byte free */ p = ctx->in + count; *p++ = 0x80; /* Bytes of padding needed to make 64 bytes */ count = 64 - 1 - count; /* Pad out to 56 mod 64 */ if (count < 8) { /* Two lots of padding: Pad the first block to 64 bytes */ memset( p, 0, count ); byteReverse( ctx->in, 16 ); MD5Transform( ctx->buf, (unsigned int *)ctx->in ); /* Now fill the next block with 56 bytes */ memset( ctx->in, 0, 56 ); } else { /* Pad block to 56 bytes */ memset( p, 0, count - 8 ); } byteReverse( ctx->in, 14 ); /* Append length in bits and transform */ ((unsigned int *)ctx->in)[14] = ctx->i[0]; ((unsigned int *)ctx->in)[15] = ctx->i[1]; MD5Transform( ctx->buf, (unsigned int *)ctx->in ); byteReverse( (unsigned char *)ctx->buf, 4 ); memcpy( ctx->digest, ctx->buf, 16 ); }