Commit 002d6a94 authored by Alexandre Julliard's avatar Alexandre Julliard

zlib: Run source files through zlib2ansi to avoid K&R function definitions.

parent 36203f1b
......@@ -60,10 +60,10 @@ local uLong adler32_combine_ OF((uLong adler1, uLong adler2, z_off64_t len2));
#endif
/* ========================================================================= */
uLong ZEXPORT adler32_z(adler, buf, len)
uLong adler;
const Bytef *buf;
z_size_t len;
uLong ZEXPORT adler32_z(
uLong adler,
const Bytef *buf,
z_size_t len)
{
unsigned long sum2;
unsigned n;
......@@ -131,19 +131,19 @@ uLong ZEXPORT adler32_z(adler, buf, len)
}
/* ========================================================================= */
uLong ZEXPORT adler32(adler, buf, len)
uLong adler;
const Bytef *buf;
uInt len;
uLong ZEXPORT adler32(
uLong adler,
const Bytef *buf,
uInt len)
{
return adler32_z(adler, buf, len);
}
/* ========================================================================= */
local uLong adler32_combine_(adler1, adler2, len2)
uLong adler1;
uLong adler2;
z_off64_t len2;
local uLong adler32_combine_(
uLong adler1,
uLong adler2,
z_off64_t len2)
{
unsigned long sum1;
unsigned long sum2;
......@@ -169,18 +169,18 @@ local uLong adler32_combine_(adler1, adler2, len2)
}
/* ========================================================================= */
uLong ZEXPORT adler32_combine(adler1, adler2, len2)
uLong adler1;
uLong adler2;
z_off_t len2;
uLong ZEXPORT adler32_combine(
uLong adler1,
uLong adler2,
z_off_t len2)
{
return adler32_combine_(adler1, adler2, len2);
}
uLong ZEXPORT adler32_combine64(adler1, adler2, len2)
uLong adler1;
uLong adler2;
z_off64_t len2;
uLong ZEXPORT adler32_combine64(
uLong adler1,
uLong adler2,
z_off64_t len2)
{
return adler32_combine_(adler1, adler2, len2);
}
......@@ -123,8 +123,8 @@ local z_crc_t x2nmodp OF((z_off64_t n, unsigned k));
instruction, if one is available. This assumes that word_t is either 32 bits
or 64 bits.
*/
local z_word_t byte_swap(word)
z_word_t word;
local z_word_t byte_swap(
z_word_t word)
{
# if W == 8
return
......@@ -223,8 +223,8 @@ struct once_s {
/* Test and set. Alas, not atomic, but tries to minimize the period of
vulnerability. */
local int test_and_set OF((int volatile *));
local int test_and_set(flag)
int volatile *flag;
local int test_and_set(
int volatile *flag)
{
int was;
......@@ -447,10 +447,10 @@ local void make_crc_table()
Write the 32-bit values in table[0..k-1] to out, five per line in
hexadecimal separated by commas.
*/
local void write_table(out, table, k)
FILE *out;
const z_crc_t FAR *table;
int k;
local void write_table(
FILE *out,
const z_crc_t FAR *table,
int k)
{
int n;
......@@ -464,10 +464,10 @@ local void write_table(out, table, k)
Write the high 32-bits of each value in table[0..k-1] to out, five per line
in hexadecimal separated by commas.
*/
local void write_table32hi(out, table, k)
FILE *out;
const z_word_t FAR *table;
int k;
local void write_table32hi(
FILE *out,
const z_word_t FAR *table,
int k)
{
int n;
......@@ -484,10 +484,10 @@ int k;
bits. If not, then the type cast and format string can be adjusted
accordingly.
*/
local void write_table64(out, table, k)
FILE *out;
const z_word_t FAR *table;
int k;
local void write_table64(
FILE *out,
const z_word_t FAR *table,
int k)
{
int n;
......@@ -548,9 +548,9 @@ local void braid(ltl, big, n, w)
Return a(x) multiplied by b(x) modulo p(x), where p(x) is the CRC polynomial,
reflected. For speed, this requires that a not be zero.
*/
local z_crc_t multmodp(a, b)
z_crc_t a;
z_crc_t b;
local z_crc_t multmodp(
z_crc_t a,
z_crc_t b)
{
z_crc_t m, p;
......@@ -572,9 +572,9 @@ local z_crc_t multmodp(a, b)
Return x^(n * 2^k) modulo p(x). Requires that x2n_table[] has been
initialized.
*/
local z_crc_t x2nmodp(n, k)
z_off64_t n;
unsigned k;
local z_crc_t x2nmodp(
z_off64_t n,
unsigned k)
{
z_crc_t p;
......@@ -619,10 +619,10 @@ const z_crc_t FAR * ZEXPORT get_crc_table()
#define Z_BATCH_ZEROS 0xa10d3d0c /* computed from Z_BATCH = 3990 */
#define Z_BATCH_MIN 800 /* fewest words in a final batch */
unsigned long ZEXPORT crc32_z(crc, buf, len)
unsigned long crc;
const unsigned char FAR *buf;
z_size_t len;
unsigned long ZEXPORT crc32_z(
unsigned long crc,
const unsigned char FAR *buf,
z_size_t len)
{
z_crc_t val;
z_word_t crc1, crc2;
......@@ -723,8 +723,8 @@ unsigned long ZEXPORT crc32_z(crc, buf, len)
least-significant byte of the word as the first byte of data, without any pre
or post conditioning. This is used to combine the CRCs of each braid.
*/
local z_crc_t crc_word(data)
z_word_t data;
local z_crc_t crc_word(
z_word_t data)
{
int k;
for (k = 0; k < W; k++)
......@@ -732,8 +732,8 @@ local z_crc_t crc_word(data)
return (z_crc_t)data;
}
local z_word_t crc_word_big(data)
z_word_t data;
local z_word_t crc_word_big(
z_word_t data)
{
int k;
for (k = 0; k < W; k++)
......@@ -745,10 +745,10 @@ local z_word_t crc_word_big(data)
#endif
/* ========================================================================= */
unsigned long ZEXPORT crc32_z(crc, buf, len)
unsigned long crc;
const unsigned char FAR *buf;
z_size_t len;
unsigned long ZEXPORT crc32_z(
unsigned long crc,
const unsigned char FAR *buf,
z_size_t len)
{
/* Return initial CRC, if requested. */
if (buf == Z_NULL) return 0;
......@@ -1069,19 +1069,19 @@ unsigned long ZEXPORT crc32_z(crc, buf, len)
#endif
/* ========================================================================= */
unsigned long ZEXPORT crc32(crc, buf, len)
unsigned long crc;
const unsigned char FAR *buf;
uInt len;
unsigned long ZEXPORT crc32(
unsigned long crc,
const unsigned char FAR *buf,
uInt len)
{
return crc32_z(crc, buf, len);
}
/* ========================================================================= */
uLong ZEXPORT crc32_combine64(crc1, crc2, len2)
uLong crc1;
uLong crc2;
z_off64_t len2;
uLong ZEXPORT crc32_combine64(
uLong crc1,
uLong crc2,
z_off64_t len2)
{
#ifdef DYNAMIC_CRC_TABLE
once(&made, make_crc_table);
......@@ -1090,17 +1090,17 @@ uLong ZEXPORT crc32_combine64(crc1, crc2, len2)
}
/* ========================================================================= */
uLong ZEXPORT crc32_combine(crc1, crc2, len2)
uLong crc1;
uLong crc2;
z_off_t len2;
uLong ZEXPORT crc32_combine(
uLong crc1,
uLong crc2,
z_off_t len2)
{
return crc32_combine64(crc1, crc2, (z_off64_t)len2);
}
/* ========================================================================= */
uLong ZEXPORT crc32_combine_gen64(len2)
z_off64_t len2;
uLong ZEXPORT crc32_combine_gen64(
z_off64_t len2)
{
#ifdef DYNAMIC_CRC_TABLE
once(&made, make_crc_table);
......@@ -1109,17 +1109,17 @@ uLong ZEXPORT crc32_combine_gen64(len2)
}
/* ========================================================================= */
uLong ZEXPORT crc32_combine_gen(len2)
z_off_t len2;
uLong ZEXPORT crc32_combine_gen(
z_off_t len2)
{
return crc32_combine_gen64((z_off64_t)len2);
}
/* ========================================================================= */
uLong ZEXPORT crc32_combine_op(crc1, crc2, op)
uLong crc1;
uLong crc2;
uLong op;
uLong ZEXPORT crc32_combine_op(
uLong crc1,
uLong crc2,
uLong op)
{
return multmodp(op, crc1) ^ (crc2 & 0xffffffff);
}
......@@ -47,9 +47,9 @@
requires strm->avail_out >= 258 for each loop to avoid checking for
output space.
*/
void ZLIB_INTERNAL inflate_fast(strm, start)
z_streamp strm;
unsigned start; /* inflate()'s starting value for strm->avail_out */
void ZLIB_INTERNAL inflate_fast(
z_streamp strm,
unsigned start)
{
struct inflate_state FAR *state;
z_const unsigned char FAR *in; /* local strm->next_in */
......
......@@ -102,8 +102,8 @@ local int updatewindow OF((z_streamp strm, const unsigned char FAR *end,
local unsigned syncsearch OF((unsigned FAR *have, const unsigned char FAR *buf,
unsigned len));
local int inflateStateCheck(strm)
z_streamp strm;
local int inflateStateCheck(
z_streamp strm)
{
struct inflate_state FAR *state;
if (strm == Z_NULL ||
......@@ -116,8 +116,8 @@ z_streamp strm;
return 0;
}
int ZEXPORT inflateResetKeep(strm)
z_streamp strm;
int ZEXPORT inflateResetKeep(
z_streamp strm)
{
struct inflate_state FAR *state;
......@@ -142,8 +142,8 @@ z_streamp strm;
return Z_OK;
}
int ZEXPORT inflateReset(strm)
z_streamp strm;
int ZEXPORT inflateReset(
z_streamp strm)
{
struct inflate_state FAR *state;
......@@ -155,9 +155,9 @@ z_streamp strm;
return inflateResetKeep(strm);
}
int ZEXPORT inflateReset2(strm, windowBits)
z_streamp strm;
int windowBits;
int ZEXPORT inflateReset2(
z_streamp strm,
int windowBits)
{
int wrap;
struct inflate_state FAR *state;
......@@ -195,11 +195,11 @@ int windowBits;
return inflateReset(strm);
}
int ZEXPORT inflateInit2_(strm, windowBits, version, stream_size)
z_streamp strm;
int windowBits;
const char *version;
int stream_size;
int ZEXPORT inflateInit2_(
z_streamp strm,
int windowBits,
const char *version,
int stream_size)
{
int ret;
struct inflate_state FAR *state;
......@@ -239,18 +239,18 @@ int stream_size;
return ret;
}
int ZEXPORT inflateInit_(strm, version, stream_size)
z_streamp strm;
const char *version;
int stream_size;
int ZEXPORT inflateInit_(
z_streamp strm,
const char *version,
int stream_size)
{
return inflateInit2_(strm, DEF_WBITS, version, stream_size);
}
int ZEXPORT inflatePrime(strm, bits, value)
z_streamp strm;
int bits;
int value;
int ZEXPORT inflatePrime(
z_streamp strm,
int bits,
int value)
{
struct inflate_state FAR *state;
......@@ -278,8 +278,8 @@ int value;
used for threaded applications, since the rewriting of the tables and virgin
may not be thread-safe.
*/
local void fixedtables(state)
struct inflate_state FAR *state;
local void fixedtables(
struct inflate_state FAR *state)
{
#ifdef BUILDFIXED
static int virgin = 1;
......@@ -396,10 +396,10 @@ void makefixed()
output will fall in the output data, making match copies simpler and faster.
The advantage may be dependent on the size of the processor's data caches.
*/
local int updatewindow(strm, end, copy)
z_streamp strm;
const Bytef *end;
unsigned copy;
local int updatewindow(
z_streamp strm,
const Bytef *end,
unsigned copy)
{
struct inflate_state FAR *state;
unsigned dist;
......@@ -622,9 +622,9 @@ unsigned copy;
will return Z_BUF_ERROR if it has not reached the end of the stream.
*/
int ZEXPORT inflate(strm, flush)
z_streamp strm;
int flush;
int ZEXPORT inflate(
z_streamp strm,
int flush)
{
struct inflate_state FAR *state;
z_const unsigned char FAR *next; /* next input */
......@@ -1301,8 +1301,8 @@ int flush;
return ret;
}
int ZEXPORT inflateEnd(strm)
z_streamp strm;
int ZEXPORT inflateEnd(
z_streamp strm)
{
struct inflate_state FAR *state;
if (inflateStateCheck(strm))
......@@ -1315,10 +1315,10 @@ z_streamp strm;
return Z_OK;
}
int ZEXPORT inflateGetDictionary(strm, dictionary, dictLength)
z_streamp strm;
Bytef *dictionary;
uInt *dictLength;
int ZEXPORT inflateGetDictionary(
z_streamp strm,
Bytef *dictionary,
uInt *dictLength)
{
struct inflate_state FAR *state;
......@@ -1338,10 +1338,10 @@ uInt *dictLength;
return Z_OK;
}
int ZEXPORT inflateSetDictionary(strm, dictionary, dictLength)
z_streamp strm;
const Bytef *dictionary;
uInt dictLength;
int ZEXPORT inflateSetDictionary(
z_streamp strm,
const Bytef *dictionary,
uInt dictLength)
{
struct inflate_state FAR *state;
unsigned long dictid;
......@@ -1373,9 +1373,9 @@ uInt dictLength;
return Z_OK;
}
int ZEXPORT inflateGetHeader(strm, head)
z_streamp strm;
gz_headerp head;
int ZEXPORT inflateGetHeader(
z_streamp strm,
gz_headerp head)
{
struct inflate_state FAR *state;
......@@ -1401,10 +1401,10 @@ gz_headerp head;
called again with more data and the *have state. *have is initialized to
zero for the first call.
*/
local unsigned syncsearch(have, buf, len)
unsigned FAR *have;
const unsigned char FAR *buf;
unsigned len;
local unsigned syncsearch(
unsigned FAR *have,
const unsigned char FAR *buf,
unsigned len)
{
unsigned got;
unsigned next;
......@@ -1424,8 +1424,8 @@ unsigned len;
return next;
}
int ZEXPORT inflateSync(strm)
z_streamp strm;
int ZEXPORT inflateSync(
z_streamp strm)
{
unsigned len; /* number of bytes to look at or looked at */
int flags; /* temporary to save header status */
......@@ -1482,8 +1482,8 @@ z_streamp strm;
block. When decompressing, PPP checks that at the end of input packet,
inflate is waiting for these length bytes.
*/
int ZEXPORT inflateSyncPoint(strm)
z_streamp strm;
int ZEXPORT inflateSyncPoint(
z_streamp strm)
{
struct inflate_state FAR *state;
......@@ -1492,9 +1492,9 @@ z_streamp strm;
return state->mode == STORED && state->bits == 0;
}
int ZEXPORT inflateCopy(dest, source)
z_streamp dest;
z_streamp source;
int ZEXPORT inflateCopy(
z_streamp dest,
z_streamp source)
{
struct inflate_state FAR *state;
struct inflate_state FAR *copy;
......@@ -1539,9 +1539,9 @@ z_streamp source;
return Z_OK;
}
int ZEXPORT inflateUndermine(strm, subvert)
z_streamp strm;
int subvert;
int ZEXPORT inflateUndermine(
z_streamp strm,
int subvert)
{
struct inflate_state FAR *state;
......@@ -1557,9 +1557,9 @@ int subvert;
#endif
}
int ZEXPORT inflateValidate(strm, check)
z_streamp strm;
int check;
int ZEXPORT inflateValidate(
z_streamp strm,
int check)
{
struct inflate_state FAR *state;
......@@ -1572,8 +1572,8 @@ int check;
return Z_OK;
}
long ZEXPORT inflateMark(strm)
z_streamp strm;
long ZEXPORT inflateMark(
z_streamp strm)
{
struct inflate_state FAR *state;
......@@ -1585,8 +1585,8 @@ z_streamp strm;
(state->mode == MATCH ? state->was - state->length : 0));
}
unsigned long ZEXPORT inflateCodesUsed(strm)
z_streamp strm;
unsigned long ZEXPORT inflateCodesUsed(
z_streamp strm)
{
struct inflate_state FAR *state;
if (inflateStateCheck(strm)) return (unsigned long)-1;
......
......@@ -29,13 +29,13 @@ const char inflate_copyright[] =
table index bits. It will differ if the request is greater than the
longest code or if it is less than the shortest code.
*/
int ZLIB_INTERNAL inflate_table(type, lens, codes, table, bits, work)
codetype type;
unsigned short FAR *lens;
unsigned codes;
code FAR * FAR *table;
unsigned FAR *bits;
unsigned short FAR *work;
int ZLIB_INTERNAL inflate_table(
codetype type,
unsigned short FAR *lens,
unsigned codes,
code FAR * FAR *table,
unsigned FAR *bits,
unsigned short FAR *work)
{
unsigned len; /* a code's length in bits */
unsigned sym; /* index of code symbols */
......
......@@ -183,10 +183,10 @@ local void gen_trees_header OF((void));
#ifdef ZLIB_DEBUG
local void send_bits OF((deflate_state *s, int value, int length));
local void send_bits(s, value, length)
deflate_state *s;
int value; /* value to send */
int length; /* number of bits */
local void send_bits(
deflate_state *s,
int value,
int length)
{
Tracevv((stderr," l %2d v %4x ", length, value));
Assert(length > 0 && length <= 15, "invalid length");
......@@ -376,8 +376,8 @@ void gen_trees_header()
/* ===========================================================================
* Initialize the tree data structures for a new zlib stream.
*/
void ZLIB_INTERNAL _tr_init(s)
deflate_state *s;
void ZLIB_INTERNAL _tr_init(
deflate_state *s)
{
tr_static_init();
......@@ -404,8 +404,8 @@ void ZLIB_INTERNAL _tr_init(s)
/* ===========================================================================
* Initialize a new block.
*/
local void init_block(s)
deflate_state *s;
local void init_block(
deflate_state *s)
{
int n; /* iterates over tree elements */
......@@ -448,10 +448,10 @@ local void init_block(s)
* when the heap property is re-established (each father smaller than its
* two sons).
*/
local void pqdownheap(s, tree, k)
deflate_state *s;
ct_data *tree; /* the tree to restore */
int k; /* node to move down */
local void pqdownheap(
deflate_state *s,
ct_data *tree,
int k)
{
int v = s->heap[k];
int j = k << 1; /* left son of k */
......@@ -483,9 +483,9 @@ local void pqdownheap(s, tree, k)
* The length opt_len is updated; static_len is also updated if stree is
* not null.
*/
local void gen_bitlen(s, desc)
deflate_state *s;
tree_desc *desc; /* the tree descriptor */
local void gen_bitlen(
deflate_state *s,
tree_desc *desc)
{
ct_data *tree = desc->dyn_tree;
int max_code = desc->max_code;
......@@ -569,10 +569,10 @@ local void gen_bitlen(s, desc)
* OUT assertion: the field code is set for all tree elements of non
* zero code length.
*/
local void gen_codes(tree, max_code, bl_count)
ct_data *tree; /* the tree to decorate */
int max_code; /* largest code with non zero frequency */
ushf *bl_count; /* number of codes at each bit length */
local void gen_codes(
ct_data *tree,
int max_code,
ushf *bl_count)
{
ush next_code[MAX_BITS+1]; /* next code value for each bit length */
unsigned code = 0; /* running code value */
......@@ -612,9 +612,9 @@ local void gen_codes(tree, max_code, bl_count)
* and corresponding code. The length opt_len is updated; static_len is
* also updated if stree is not null. The field max_code is set.
*/
local void build_tree(s, desc)
deflate_state *s;
tree_desc *desc; /* the tree descriptor */
local void build_tree(
deflate_state *s,
tree_desc *desc)
{
ct_data *tree = desc->dyn_tree;
const ct_data *stree = desc->stat_desc->static_tree;
......@@ -700,10 +700,10 @@ local void build_tree(s, desc)
* Scan a literal or distance tree to determine the frequencies of the codes
* in the bit length tree.
*/
local void scan_tree(s, tree, max_code)
deflate_state *s;
ct_data *tree; /* the tree to be scanned */
int max_code; /* and its largest code of non zero frequency */
local void scan_tree(
deflate_state *s,
ct_data *tree,
int max_code)
{
int n; /* iterates over all tree elements */
int prevlen = -1; /* last emitted length */
......@@ -745,10 +745,10 @@ local void scan_tree(s, tree, max_code)
* Send a literal or distance tree in compressed form, using the codes in
* bl_tree.
*/
local void send_tree(s, tree, max_code)
deflate_state *s;
ct_data *tree; /* the tree to be scanned */
int max_code; /* and its largest code of non zero frequency */
local void send_tree(
deflate_state *s,
ct_data *tree,
int max_code)
{
int n; /* iterates over all tree elements */
int prevlen = -1; /* last emitted length */
......@@ -796,8 +796,8 @@ local void send_tree(s, tree, max_code)
* Construct the Huffman tree for the bit lengths and return the index in
* bl_order of the last bit length code to send.
*/
local int build_bl_tree(s)
deflate_state *s;
local int build_bl_tree(
deflate_state *s)
{
int max_blindex; /* index of last bit length code of non zero freq */
......@@ -831,9 +831,11 @@ local int build_bl_tree(s)
* lengths of the bit length codes, the literal tree and the distance tree.
* IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4.
*/
local void send_all_trees(s, lcodes, dcodes, blcodes)
deflate_state *s;
int lcodes, dcodes, blcodes; /* number of codes for each tree */
local void send_all_trees(
deflate_state *s,
int lcodes,
int dcodes,
int blcodes)
{
int rank; /* index in bl_order */
......@@ -860,11 +862,11 @@ local void send_all_trees(s, lcodes, dcodes, blcodes)
/* ===========================================================================
* Send a stored block
*/
void ZLIB_INTERNAL _tr_stored_block(s, buf, stored_len, last)
deflate_state *s;
charf *buf; /* input block */
ulg stored_len; /* length of input block */
int last; /* one if this is the last block for a file */
void ZLIB_INTERNAL _tr_stored_block(
deflate_state *s,
charf *buf,
ulg stored_len,
int last)
{
send_bits(s, (STORED_BLOCK<<1) + last, 3); /* send block type */
bi_windup(s); /* align on byte boundary */
......@@ -884,8 +886,8 @@ void ZLIB_INTERNAL _tr_stored_block(s, buf, stored_len, last)
/* ===========================================================================
* Flush the bits in the bit buffer to pending output (leaves at most 7 bits)
*/
void ZLIB_INTERNAL _tr_flush_bits(s)
deflate_state *s;
void ZLIB_INTERNAL _tr_flush_bits(
deflate_state *s)
{
bi_flush(s);
}
......@@ -894,8 +896,8 @@ void ZLIB_INTERNAL _tr_flush_bits(s)
* Send one empty static block to give enough lookahead for inflate.
* This takes 10 bits, of which 7 may remain in the bit buffer.
*/
void ZLIB_INTERNAL _tr_align(s)
deflate_state *s;
void ZLIB_INTERNAL _tr_align(
deflate_state *s)
{
send_bits(s, STATIC_TREES<<1, 3);
send_code(s, END_BLOCK, static_ltree);
......@@ -909,11 +911,11 @@ void ZLIB_INTERNAL _tr_align(s)
* Determine the best encoding for the current block: dynamic trees, static
* trees or store, and write out the encoded block.
*/
void ZLIB_INTERNAL _tr_flush_block(s, buf, stored_len, last)
deflate_state *s;
charf *buf; /* input block, or NULL if too old */
ulg stored_len; /* length of input block */
int last; /* one if this is the last block for a file */
void ZLIB_INTERNAL _tr_flush_block(
deflate_state *s,
charf *buf,
ulg stored_len,
int last)
{
ulg opt_lenb, static_lenb; /* opt_len and static_len in bytes */
int max_blindex = 0; /* index of last bit length code of non zero freq */
......@@ -1011,10 +1013,10 @@ void ZLIB_INTERNAL _tr_flush_block(s, buf, stored_len, last)
* Save the match info and tally the frequency counts. Return true if
* the current block must be flushed.
*/
int ZLIB_INTERNAL _tr_tally(s, dist, lc)
deflate_state *s;
unsigned dist; /* distance of matched string */
unsigned lc; /* match length - MIN_MATCH or unmatched char (dist==0) */
int ZLIB_INTERNAL _tr_tally(
deflate_state *s,
unsigned dist,
unsigned lc)
{
s->sym_buf[s->sym_next++] = (uch)dist;
s->sym_buf[s->sym_next++] = (uch)(dist >> 8);
......@@ -1039,10 +1041,10 @@ int ZLIB_INTERNAL _tr_tally(s, dist, lc)
/* ===========================================================================
* Send the block data compressed using the given Huffman trees
*/
local void compress_block(s, ltree, dtree)
deflate_state *s;
const ct_data *ltree; /* literal tree */
const ct_data *dtree; /* distance tree */
local void compress_block(
deflate_state *s,
const ct_data *ltree,
const ct_data *dtree)
{
unsigned dist; /* distance of matched string */
int lc; /* match length or unmatched char (if dist == 0) */
......@@ -1099,8 +1101,8 @@ local void compress_block(s, ltree, dtree)
* (7 {BEL}, 8 {BS}, 11 {VT}, 12 {FF}, 26 {SUB}, 27 {ESC}).
* IN assertion: the fields Freq of dyn_ltree are set.
*/
local int detect_data_type(s)
deflate_state *s;
local int detect_data_type(
deflate_state *s)
{
/* block_mask is the bit mask of block-listed bytes
* set bits 0..6, 14..25, and 28..31
......@@ -1133,9 +1135,9 @@ local int detect_data_type(s)
* method would use a table)
* IN assertion: 1 <= len <= 15
*/
local unsigned bi_reverse(code, len)
unsigned code; /* the value to invert */
int len; /* its bit length */
local unsigned bi_reverse(
unsigned code,
int len)
{
register unsigned res = 0;
do {
......@@ -1148,8 +1150,8 @@ local unsigned bi_reverse(code, len)
/* ===========================================================================
* Flush the bit buffer, keeping at most 7 bits in it.
*/
local void bi_flush(s)
deflate_state *s;
local void bi_flush(
deflate_state *s)
{
if (s->bi_valid == 16) {
put_short(s, s->bi_buf);
......@@ -1165,8 +1167,8 @@ local void bi_flush(s)
/* ===========================================================================
* Flush the bit buffer and align the output on a byte boundary
*/
local void bi_windup(s)
deflate_state *s;
local void bi_windup(
deflate_state *s)
{
if (s->bi_valid > 8) {
put_short(s, s->bi_buf);
......
......@@ -121,8 +121,8 @@ uLong ZEXPORT zlibCompileFlags()
# endif
int ZLIB_INTERNAL z_verbose = verbose;
void ZLIB_INTERNAL z_error(m)
char *m;
void ZLIB_INTERNAL z_error(
char *m)
{
fprintf(stderr, "%s\n", m);
exit(1);
......@@ -132,8 +132,8 @@ void ZLIB_INTERNAL z_error(m)
/* exported to allow conversion of error code to string for compress() and
* uncompress()
*/
const char * ZEXPORT zError(err)
int err;
const char * ZEXPORT zError(
int err)
{
return ERR_MSG(err);
}
......@@ -148,10 +148,10 @@ const char * ZEXPORT zError(err)
#ifndef HAVE_MEMCPY
void ZLIB_INTERNAL zmemcpy(dest, source, len)
Bytef* dest;
const Bytef* source;
uInt len;
void ZLIB_INTERNAL zmemcpy(
Bytef* dest,
const Bytef* source,
uInt len)
{
if (len == 0) return;
do {
......@@ -159,10 +159,10 @@ void ZLIB_INTERNAL zmemcpy(dest, source, len)
} while (--len != 0);
}
int ZLIB_INTERNAL zmemcmp(s1, s2, len)
const Bytef* s1;
const Bytef* s2;
uInt len;
int ZLIB_INTERNAL zmemcmp(
const Bytef* s1,
const Bytef* s2,
uInt len)
{
uInt j;
......@@ -172,9 +172,9 @@ int ZLIB_INTERNAL zmemcmp(s1, s2, len)
return 0;
}
void ZLIB_INTERNAL zmemzero(dest, len)
Bytef* dest;
uInt len;
void ZLIB_INTERNAL zmemzero(
Bytef* dest,
uInt len)
{
if (len == 0) return;
do {
......@@ -304,19 +304,19 @@ extern voidp calloc OF((uInt items, uInt size));
extern void free OF((voidpf ptr));
#endif
voidpf ZLIB_INTERNAL zcalloc(opaque, items, size)
voidpf opaque;
unsigned items;
unsigned size;
voidpf ZLIB_INTERNAL zcalloc(
voidpf opaque,
unsigned items,
unsigned size)
{
(void)opaque;
return sizeof(uInt) > 2 ? (voidpf)malloc(items * size) :
(voidpf)calloc(items, size);
}
void ZLIB_INTERNAL zcfree(opaque, ptr)
voidpf opaque;
voidpf ptr;
void ZLIB_INTERNAL zcfree(
voidpf opaque,
voidpf ptr)
{
(void)opaque;
free(ptr);
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment