Commit c53bd233 authored by Alexandre Julliard's avatar Alexandre Julliard

msvcrt: Use the log10()/log10f() implementation from the bundled musl library.

parent f0c70050
......@@ -1084,69 +1084,6 @@ float CDECL expf( float x )
return y;
}
/*********************************************************************
* log10f (MSVCRT.@)
*/
float CDECL log10f( float x )
{
static const float ivln10hi = 4.3432617188e-01,
ivln10lo = -3.1689971365e-05,
log10_2hi = 3.0102920532e-01,
log10_2lo = 7.9034151668e-07,
Lg1 = 0xaaaaaa.0p-24,
Lg2 = 0xccce13.0p-25,
Lg3 = 0x91e9ee.0p-25,
Lg4 = 0xf89e26.0p-26;
union {float f; UINT32 i;} u = {x};
float hfsq, f, s, z, R, w, t1, t2, dk, hi, lo;
UINT32 ix;
int k;
ix = u.i;
k = 0;
if (ix < 0x00800000 || ix >> 31) { /* x < 2**-126 */
if (ix << 1 == 0)
return math_error(_SING, "log10f", x, 0, -1 / (x * x));
if ((ix & ~(1u << 31)) > 0x7f800000)
return x;
if (ix >> 31)
return math_error(_DOMAIN, "log10f", x, 0, (x - x) / (x - x));
/* subnormal number, scale up x */
k -= 25;
x *= 0x1p25f;
u.f = x;
ix = u.i;
} else if (ix >= 0x7f800000) {
return x;
} else if (ix == 0x3f800000)
return 0;
/* reduce x into [sqrt(2)/2, sqrt(2)] */
ix += 0x3f800000 - 0x3f3504f3;
k += (int)(ix >> 23) - 0x7f;
ix = (ix & 0x007fffff) + 0x3f3504f3;
u.i = ix;
x = u.f;
f = x - 1.0f;
s = f / (2.0f + f);
z = s * s;
w = z * z;
t1= w * (Lg2 + w * Lg4);
t2= z * (Lg1 + w * Lg3);
R = t2 + t1;
hfsq = 0.5f * f * f;
hi = f - hfsq;
u.f = hi;
u.i &= 0xfffff000;
hi = u.f;
lo = f - hi - hfsq + s * (hfsq + R);
dk = k;
return dk * log10_2lo + (lo + hi) * ivln10lo + lo * ivln10hi + hi * ivln10hi + dk * log10_2hi;
}
/* Subnormal input is normalized so ix has negative biased exponent.
Output is multiplied by POWF_SCALE (where 1 << 5). */
static double powf_log2(UINT32 ix)
......@@ -2599,89 +2536,6 @@ double CDECL exp( double x )
return scale + scale * tmp;
}
/*********************************************************************
* log10 (MSVCRT.@)
*/
double CDECL log10( double x )
{
static const double ivln10hi = 4.34294481878168880939e-01,
ivln10lo = 2.50829467116452752298e-11,
log10_2hi = 3.01029995663611771306e-01,
log10_2lo = 3.69423907715893078616e-13,
Lg1 = 6.666666666666735130e-01,
Lg2 = 3.999999999940941908e-01,
Lg3 = 2.857142874366239149e-01,
Lg4 = 2.222219843214978396e-01,
Lg5 = 1.818357216161805012e-01,
Lg6 = 1.531383769920937332e-01,
Lg7 = 1.479819860511658591e-01;
union {double f; UINT64 i;} u = {x};
double hfsq, f, s, z, R, w, t1, t2, dk, y, hi, lo, val_hi, val_lo;
UINT32 hx;
int k;
hx = u.i >> 32;
k = 0;
if (hx < 0x00100000 || hx >> 31) {
if (u.i << 1 == 0)
return math_error(_SING, "log10", x, 0, -1 / (x * x));
if ((u.i & ~(1ULL << 63)) > 0x7ff0000000000000ULL)
return x;
if (hx >> 31)
return math_error(_DOMAIN, "log10", x, 0, (x - x) / (x - x));
/* subnormal number, scale x up */
k -= 54;
x *= 0x1p54;
u.f = x;
hx = u.i >> 32;
} else if (hx >= 0x7ff00000) {
return x;
} else if (hx == 0x3ff00000 && u.i<<32 == 0)
return 0;
/* reduce x into [sqrt(2)/2, sqrt(2)] */
hx += 0x3ff00000 - 0x3fe6a09e;
k += (int)(hx >> 20) - 0x3ff;
hx = (hx & 0x000fffff) + 0x3fe6a09e;
u.i = (UINT64)hx << 32 | (u.i & 0xffffffff);
x = u.f;
f = x - 1.0;
hfsq = 0.5 * f * f;
s = f / (2.0 + f);
z = s * s;
w = z * z;
t1 = w * (Lg2 + w * (Lg4 + w * Lg6));
t2 = z * (Lg1 + w * (Lg3 + w * (Lg5 + w * Lg7)));
R = t2 + t1;
/* hi+lo = f - hfsq + s*(hfsq+R) ~ log(1+f) */
hi = f - hfsq;
u.f = hi;
u.i &= (UINT64)-1 << 32;
hi = u.f;
lo = f - hi - hfsq + s * (hfsq + R);
/* val_hi+val_lo ~ log10(1+f) + k*log10(2) */
val_hi = hi * ivln10hi;
dk = k;
y = dk * log10_2hi;
val_lo = dk * log10_2lo + (lo + hi) * ivln10lo + lo * ivln10hi;
/*
* Extra precision in for adding y is not strictly needed
* since there is no very large cancellation near x = sqrt(2) or
* x = 1/sqrt(2), but we do it anyway since it costs little on CPUs
* with some parallelism and it reduces the error for many args.
*/
w = y + val_hi;
val_lo += (y - w) + val_hi;
val_hi = w;
return val_lo + val_hi;
}
/* Compute y+TAIL = log(x) where the rounded result is y and TAIL has about
additional 15 bits precision. IX is the bit representation of x, but
normalized in the subnormal range using the sign bit for the exponent. */
......
......@@ -45,9 +45,11 @@ double __cdecl log10(double x)
k = 0;
if (hx < 0x00100000 || hx>>31) {
if (u.i<<1 == 0)
return -1/(x*x); /* log(+-0)=-inf */
if (hx>>31)
return (x-x)/0.0; /* log(-#) = NaN */
return math_error(_SING, "log10", x, 0, -1 / (x * x));
if ((u.i & ~(1ULL << 63)) > 0x7ff0000000000000ULL)
return x;
if (hx >> 31)
return math_error(_DOMAIN, "log10", x, 0, (x - x) / (x - x));
/* subnormal number, scale x up */
k -= 54;
x *= 0x1p54;
......
......@@ -39,9 +39,11 @@ float __cdecl log10f(float x)
k = 0;
if (ix < 0x00800000 || ix>>31) { /* x < 2**-126 */
if (ix<<1 == 0)
return -1/(x*x); /* log(+-0)=-inf */
return math_error(_SING, "log10f", x, 0, -1 / (x * x));
if ((ix & ~(1u << 31)) > 0x7f800000)
return x;
if (ix>>31)
return (x-x)/0.0f; /* log(-#) = NaN */
return math_error(_DOMAIN, "log10f", x, 0, (x - x) / (x - x));
/* subnormal number, scale up x */
k -= 25;
x *= 0x1p25f;
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment