/* * SGI FREE SOFTWARE LICENSE B (Version 2.0, Sept. 18, 2008) * Copyright (C) 1991-2000 Silicon Graphics, Inc. All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice including the dates of first publication and * either this permission notice or a reference to * http://oss.sgi.com/projects/FreeB/ * shall be included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * SILICON GRAPHICS, INC. BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, * WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF * OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. * * Except as contained in this notice, the name of Silicon Graphics, Inc. * shall not be used in advertising or otherwise to promote the sale, use or * other dealings in this Software without prior written authorization from * Silicon Graphics, Inc. */ /* ** Author: Eric Veach, July 1994. ** */ #ifndef __tess_h_ #define __tess_h_ #include <setjmp.h> #include "wine/glu.h" #include "mesh.h" typedef struct Dict Dict; /* priority queue */ /* Since we support deletion the data structure is a little more * complicated than an ordinary heap. "nodes" is the heap itself; * active nodes are stored in the range 1..pq->size. When the * heap exceeds its allocated size (pq->max), its size doubles. * The children of node i are nodes 2i and 2i+1. * * Each node stores an index into an array "handles". Each handle * stores a key, plus a pointer back to the node which currently * represents that key (ie. nodes[handles[i].node].handle == i). */ typedef void *PQkey; typedef long PQhandle; typedef struct PriorityQSort PriorityQSort; PriorityQSort *__gl_pqSortNewPriorityQ( int (*leq)(PQkey key1, PQkey key2) ); void __gl_pqSortDeletePriorityQ( PriorityQSort *pq ); int __gl_pqSortInit( PriorityQSort *pq ); PQhandle __gl_pqSortInsert( PriorityQSort *pq, PQkey key ); PQkey __gl_pqSortExtractMin( PriorityQSort *pq ); void __gl_pqSortDelete( PriorityQSort *pq, PQhandle handle ); PQkey __gl_pqSortMinimum( PriorityQSort *pq ); int __gl_pqSortIsEmpty( PriorityQSort *pq ); #define VertEq(u,v) ((u)->s == (v)->s && (u)->t == (v)->t) #define VertLeq(u,v) (((u)->s < (v)->s) || \ ((u)->s == (v)->s && (u)->t <= (v)->t)) #define EdgeEval(u,v,w) __gl_edgeEval(u,v,w) #define EdgeSign(u,v,w) __gl_edgeSign(u,v,w) /* Versions of VertLeq, EdgeSign, EdgeEval with s and t transposed. */ #define TransLeq(u,v) (((u)->t < (v)->t) || \ ((u)->t == (v)->t && (u)->s <= (v)->s)) #define TransEval(u,v,w) __gl_transEval(u,v,w) #define TransSign(u,v,w) __gl_transSign(u,v,w) #define EdgeGoesLeft(e) VertLeq( (e)->Dst, (e)->Org ) #define EdgeGoesRight(e) VertLeq( (e)->Org, (e)->Dst ) #undef ABS #define ABS(x) ((x) < 0 ? -(x) : (x)) #define VertL1dist(u,v) (ABS(u->s - v->s) + ABS(u->t - v->t)) #define VertCCW(u,v,w) __gl_vertCCW(u,v,w) int __gl_vertLeq( GLUvertex *u, GLUvertex *v ); GLdouble __gl_edgeEval( GLUvertex *u, GLUvertex *v, GLUvertex *w ); GLdouble __gl_edgeSign( GLUvertex *u, GLUvertex *v, GLUvertex *w ); GLdouble __gl_transEval( GLUvertex *u, GLUvertex *v, GLUvertex *w ); GLdouble __gl_transSign( GLUvertex *u, GLUvertex *v, GLUvertex *w ); int __gl_vertCCW( GLUvertex *u, GLUvertex *v, GLUvertex *w ); void __gl_edgeIntersect( GLUvertex *o1, GLUvertex *d1, GLUvertex *o2, GLUvertex *d2, GLUvertex *v ); /* The begin/end calls must be properly nested. We keep track of * the current state to enforce the ordering. */ enum TessState { T_DORMANT, T_IN_POLYGON, T_IN_CONTOUR }; /* We cache vertex data for single-contour polygons so that we can * try a quick-and-dirty decomposition first. */ #define TESS_MAX_CACHE 100 typedef struct CachedVertex { GLdouble coords[3]; void *data; } CachedVertex; struct GLUtesselator { /*** state needed for collecting the input data ***/ enum TessState state; /* what begin/end calls have we seen? */ GLUhalfEdge *lastEdge; /* lastEdge->Org is the most recent vertex */ GLUmesh *mesh; /* stores the input contours, and eventually the tessellation itself */ void (GLAPIENTRY *callError)( GLenum errnum ); /*** state needed for projecting onto the sweep plane ***/ GLdouble normal[3]; /* user-specified normal (if provided) */ GLdouble sUnit[3]; /* unit vector in s-direction (debugging) */ GLdouble tUnit[3]; /* unit vector in t-direction (debugging) */ /*** state needed for the line sweep ***/ GLdouble relTolerance; /* tolerance for merging features */ GLenum windingRule; /* rule for determining polygon interior */ GLboolean fatalError; /* fatal error: needed combine callback */ Dict *dict; /* edge dictionary for sweep line */ PriorityQSort *pq; /* priority queue of vertex events */ GLUvertex *event; /* current sweep event being processed */ void (GLAPIENTRY *callCombine)( GLdouble coords[3], void *data[4], GLfloat weight[4], void **outData ); /*** state needed for rendering callbacks (see render.c) ***/ GLboolean flagBoundary; /* mark boundary edges (use EdgeFlag) */ GLboolean boundaryOnly; /* Extract contours, not triangles */ GLUface *lonelyTriList; /* list of triangles which could not be rendered as strips or fans */ void (GLAPIENTRY *callBegin)( GLenum type ); void (GLAPIENTRY *callEdgeFlag)( GLboolean boundaryEdge ); void (GLAPIENTRY *callVertex)( void *data ); void (GLAPIENTRY *callEnd)( void ); void (GLAPIENTRY *callMesh)( GLUmesh *mesh ); /*** state needed to cache single-contour polygons for renderCache() */ GLboolean emptyCache; /* empty cache on next vertex() call */ int cacheCount; /* number of cached vertices */ CachedVertex cache[TESS_MAX_CACHE]; /* the vertex data */ /*** rendering callbacks that also pass polygon data ***/ void (GLAPIENTRY *callBeginData)( GLenum type, void *polygonData ); void (GLAPIENTRY *callEdgeFlagData)( GLboolean boundaryEdge, void *polygonData ); void (GLAPIENTRY *callVertexData)( void *data, void *polygonData ); void (GLAPIENTRY *callEndData)( void *polygonData ); void (GLAPIENTRY *callErrorData)( GLenum errnum, void *polygonData ); void (GLAPIENTRY *callCombineData)( GLdouble coords[3], void *data[4], GLfloat weight[4], void **outData, void *polygonData ); jmp_buf env; /* place to jump to when memAllocs fail */ void *polygonData; /* client data for current polygon */ }; void GLAPIENTRY __gl_noBeginData( GLenum type, void *polygonData ); void GLAPIENTRY __gl_noEdgeFlagData( GLboolean boundaryEdge, void *polygonData ); void GLAPIENTRY __gl_noVertexData( void *data, void *polygonData ); void GLAPIENTRY __gl_noEndData( void *polygonData ); void GLAPIENTRY __gl_noErrorData( GLenum errnum, void *polygonData ); void GLAPIENTRY __gl_noCombineData( GLdouble coords[3], void *data[4], GLfloat weight[4], void **outData, void *polygonData ); #define CALL_BEGIN_OR_BEGIN_DATA(a) \ if (tess->callBeginData != &__gl_noBeginData) \ (*tess->callBeginData)((a),tess->polygonData); \ else (*tess->callBegin)((a)); #define CALL_VERTEX_OR_VERTEX_DATA(a) \ if (tess->callVertexData != &__gl_noVertexData) \ (*tess->callVertexData)((a),tess->polygonData); \ else (*tess->callVertex)((a)); #define CALL_EDGE_FLAG_OR_EDGE_FLAG_DATA(a) \ if (tess->callEdgeFlagData != &__gl_noEdgeFlagData) \ (*tess->callEdgeFlagData)((a),tess->polygonData); \ else (*tess->callEdgeFlag)((a)); #define CALL_END_OR_END_DATA() \ if (tess->callEndData != &__gl_noEndData) \ (*tess->callEndData)(tess->polygonData); \ else (*tess->callEnd)(); #define CALL_COMBINE_OR_COMBINE_DATA(a,b,c,d) \ if (tess->callCombineData != &__gl_noCombineData) \ (*tess->callCombineData)((a),(b),(c),(d),tess->polygonData); \ else (*tess->callCombine)((a),(b),(c),(d)); #define CALL_ERROR_OR_ERROR_DATA(a) \ if (tess->callErrorData != &__gl_noErrorData) \ (*tess->callErrorData)((a),tess->polygonData); \ else (*tess->callError)((a)); void __gl_renderMesh( GLUtesselator *tess, GLUmesh *mesh ); void __gl_renderBoundary( GLUtesselator *tess, GLUmesh *mesh ); GLboolean __gl_renderCache( GLUtesselator *tess ); /* __gl_computeInterior( tess ) computes the planar arrangement specified * by the given contours, and further subdivides this arrangement * into regions. Each region is marked "inside" if it belongs * to the polygon, according to the rule given by tess->windingRule. * Each interior region is guaranteed be monotone. */ int __gl_computeInterior( GLUtesselator *tess ); #endif