/*
 * SGI FREE SOFTWARE LICENSE B (Version 2.0, Sept. 18, 2008)
 * Copyright (C) 1991-2000 Silicon Graphics, Inc. All Rights Reserved.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice including the dates of first publication and
 * either this permission notice or a reference to
 * http://oss.sgi.com/projects/FreeB/
 * shall be included in all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
 * SILICON GRAPHICS, INC. BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
 * WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF
 * OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 *
 * Except as contained in this notice, the name of Silicon Graphics, Inc.
 * shall not be used in advertising or otherwise to promote the sale, use or
 * other dealings in this Software without prior written authorization from
 * Silicon Graphics, Inc.
 */
/*
** Author: Eric Veach, July 1994.
**
*/

#ifndef __tess_h_
#define __tess_h_

#include <setjmp.h>
#include "wine/glu.h"
#include "mesh.h"

typedef struct Dict Dict;

/* priority queue */

/* Since we support deletion the data structure is a little more
 * complicated than an ordinary heap.  "nodes" is the heap itself;
 * active nodes are stored in the range 1..pq->size.  When the
 * heap exceeds its allocated size (pq->max), its size doubles.
 * The children of node i are nodes 2i and 2i+1.
 *
 * Each node stores an index into an array "handles".  Each handle
 * stores a key, plus a pointer back to the node which currently
 * represents that key (ie. nodes[handles[i].node].handle == i).
 */

typedef void *PQkey;
typedef long PQhandle;
typedef struct PriorityQSort PriorityQSort;

PriorityQSort	*__gl_pqSortNewPriorityQ( int (*leq)(PQkey key1, PQkey key2) );
void		__gl_pqSortDeletePriorityQ( PriorityQSort *pq );

int		__gl_pqSortInit( PriorityQSort *pq );
PQhandle	__gl_pqSortInsert( PriorityQSort *pq, PQkey key );
PQkey		__gl_pqSortExtractMin( PriorityQSort *pq );
void		__gl_pqSortDelete( PriorityQSort *pq, PQhandle handle );

PQkey		__gl_pqSortMinimum( PriorityQSort *pq );
int		__gl_pqSortIsEmpty( PriorityQSort *pq );


#define VertEq(u,v)	((u)->s == (v)->s && (u)->t == (v)->t)
#define VertLeq(u,v)	(((u)->s < (v)->s) || \
                         ((u)->s == (v)->s && (u)->t <= (v)->t))
#define EdgeEval(u,v,w) __gl_edgeEval(u,v,w)
#define EdgeSign(u,v,w) __gl_edgeSign(u,v,w)

/* Versions of VertLeq, EdgeSign, EdgeEval with s and t transposed. */

#define TransLeq(u,v)	(((u)->t < (v)->t) || \
                         ((u)->t == (v)->t && (u)->s <= (v)->s))
#define TransEval(u,v,w)	__gl_transEval(u,v,w)
#define TransSign(u,v,w)	__gl_transSign(u,v,w)


#define EdgeGoesLeft(e) 	VertLeq( (e)->Dst, (e)->Org )
#define EdgeGoesRight(e)	VertLeq( (e)->Org, (e)->Dst )

#undef	ABS
#define ABS(x)	((x) < 0 ? -(x) : (x))
#define VertL1dist(u,v) (ABS(u->s - v->s) + ABS(u->t - v->t))

#define VertCCW(u,v,w)	__gl_vertCCW(u,v,w)

int		__gl_vertLeq( GLUvertex *u, GLUvertex *v );
GLdouble	__gl_edgeEval( GLUvertex *u, GLUvertex *v, GLUvertex *w );
GLdouble	__gl_edgeSign( GLUvertex *u, GLUvertex *v, GLUvertex *w );
GLdouble	__gl_transEval( GLUvertex *u, GLUvertex *v, GLUvertex *w );
GLdouble	__gl_transSign( GLUvertex *u, GLUvertex *v, GLUvertex *w );
int		__gl_vertCCW( GLUvertex *u, GLUvertex *v, GLUvertex *w );
void		__gl_edgeIntersect( GLUvertex *o1, GLUvertex *d1,
				    GLUvertex *o2, GLUvertex *d2,
				    GLUvertex *v );

/* The begin/end calls must be properly nested.  We keep track of
 * the current state to enforce the ordering.
 */
enum TessState { T_DORMANT, T_IN_POLYGON, T_IN_CONTOUR };

/* We cache vertex data for single-contour polygons so that we can
 * try a quick-and-dirty decomposition first.
 */
#define TESS_MAX_CACHE	100

typedef struct CachedVertex {
  GLdouble	coords[3];
  void		*data;
} CachedVertex;

struct GLUtesselator {

  /*** state needed for collecting the input data ***/

  enum TessState state;		/* what begin/end calls have we seen? */

  GLUhalfEdge	*lastEdge;	/* lastEdge->Org is the most recent vertex */
  GLUmesh	*mesh;		/* stores the input contours, and eventually
                                   the tessellation itself */

  void		(GLAPIENTRY *callError)( GLenum errnum );

  /*** state needed for projecting onto the sweep plane ***/

  GLdouble	normal[3];	/* user-specified normal (if provided) */
  GLdouble	sUnit[3];	/* unit vector in s-direction (debugging) */
  GLdouble	tUnit[3];	/* unit vector in t-direction (debugging) */

  /*** state needed for the line sweep ***/

  GLdouble	relTolerance;	/* tolerance for merging features */
  GLenum	windingRule;	/* rule for determining polygon interior */
  GLboolean	fatalError;	/* fatal error: needed combine callback */

  Dict		*dict;		/* edge dictionary for sweep line */
  PriorityQSort	*pq;		/* priority queue of vertex events */
  GLUvertex	*event;		/* current sweep event being processed */

  void		(GLAPIENTRY *callCombine)( GLdouble coords[3], void *data[4],
			        GLfloat weight[4], void **outData );

  /*** state needed for rendering callbacks (see render.c) ***/

  GLboolean	flagBoundary;	/* mark boundary edges (use EdgeFlag) */
  GLboolean	boundaryOnly;	/* Extract contours, not triangles */
  GLUface	*lonelyTriList;
    /* list of triangles which could not be rendered as strips or fans */

  void		(GLAPIENTRY *callBegin)( GLenum type );
  void		(GLAPIENTRY *callEdgeFlag)( GLboolean boundaryEdge );
  void		(GLAPIENTRY *callVertex)( void *data );
  void		(GLAPIENTRY *callEnd)( void );
  void		(GLAPIENTRY *callMesh)( GLUmesh *mesh );


  /*** state needed to cache single-contour polygons for renderCache() */

  GLboolean	emptyCache;		/* empty cache on next vertex() call */
  int		cacheCount;		/* number of cached vertices */
  CachedVertex	cache[TESS_MAX_CACHE];	/* the vertex data */

  /*** rendering callbacks that also pass polygon data  ***/
  void		(GLAPIENTRY *callBeginData)( GLenum type, void *polygonData );
  void		(GLAPIENTRY *callEdgeFlagData)( GLboolean boundaryEdge,
				     void *polygonData );
  void		(GLAPIENTRY *callVertexData)( void *data, void *polygonData );
  void		(GLAPIENTRY *callEndData)( void *polygonData );
  void		(GLAPIENTRY *callErrorData)( GLenum errnum, void *polygonData );
  void		(GLAPIENTRY *callCombineData)( GLdouble coords[3], void *data[4],
				    GLfloat weight[4], void **outData,
				    void *polygonData );

  jmp_buf env;			/* place to jump to when memAllocs fail */

  void *polygonData;		/* client data for current polygon */
};

void GLAPIENTRY __gl_noBeginData( GLenum type, void *polygonData );
void GLAPIENTRY __gl_noEdgeFlagData( GLboolean boundaryEdge, void *polygonData );
void GLAPIENTRY __gl_noVertexData( void *data, void *polygonData );
void GLAPIENTRY __gl_noEndData( void *polygonData );
void GLAPIENTRY __gl_noErrorData( GLenum errnum, void *polygonData );
void GLAPIENTRY __gl_noCombineData( GLdouble coords[3], void *data[4],
			 GLfloat weight[4], void **outData,
			 void *polygonData );

#define CALL_BEGIN_OR_BEGIN_DATA(a) \
   if (tess->callBeginData != &__gl_noBeginData) \
      (*tess->callBeginData)((a),tess->polygonData); \
   else (*tess->callBegin)((a));

#define CALL_VERTEX_OR_VERTEX_DATA(a) \
   if (tess->callVertexData != &__gl_noVertexData) \
      (*tess->callVertexData)((a),tess->polygonData); \
   else (*tess->callVertex)((a));

#define CALL_EDGE_FLAG_OR_EDGE_FLAG_DATA(a) \
   if (tess->callEdgeFlagData != &__gl_noEdgeFlagData) \
      (*tess->callEdgeFlagData)((a),tess->polygonData); \
   else (*tess->callEdgeFlag)((a));

#define CALL_END_OR_END_DATA() \
   if (tess->callEndData != &__gl_noEndData) \
      (*tess->callEndData)(tess->polygonData); \
   else (*tess->callEnd)();

#define CALL_COMBINE_OR_COMBINE_DATA(a,b,c,d) \
   if (tess->callCombineData != &__gl_noCombineData) \
      (*tess->callCombineData)((a),(b),(c),(d),tess->polygonData); \
   else (*tess->callCombine)((a),(b),(c),(d));

#define CALL_ERROR_OR_ERROR_DATA(a) \
   if (tess->callErrorData != &__gl_noErrorData) \
      (*tess->callErrorData)((a),tess->polygonData); \
   else (*tess->callError)((a));

void __gl_renderMesh( GLUtesselator *tess, GLUmesh *mesh );
void __gl_renderBoundary( GLUtesselator *tess, GLUmesh *mesh );

GLboolean __gl_renderCache( GLUtesselator *tess );

/* __gl_computeInterior( tess ) computes the planar arrangement specified
 * by the given contours, and further subdivides this arrangement
 * into regions.  Each region is marked "inside" if it belongs
 * to the polygon, according to the rule given by tess->windingRule.
 * Each interior region is guaranteed be monotone.
 */
int __gl_computeInterior( GLUtesselator *tess );

#endif