/* * Various storage structures (pool allocation, vector, hash table) * * Copyright (C) 1993, Eric Youngdale. * 2004, Eric Pouech * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA */ #include "config.h" #include <assert.h> #include <stdlib.h> #include "wine/debug.h" #include "dbghelp_private.h" #ifdef USE_STATS #include <math.h> #endif WINE_DEFAULT_DEBUG_CHANNEL(dbghelp); struct pool_arena { struct list entry; char *current; char *end; }; void pool_init(struct pool* a, size_t arena_size) { list_init( &a->arena_list ); list_init( &a->arena_full ); a->arena_size = arena_size; } void pool_destroy(struct pool* pool) { struct pool_arena* arena; struct pool_arena* next; #ifdef USE_STATS size_t alloc, used, num; alloc = used = num = 0; LIST_FOR_EACH_ENTRY( arena, &pool->arena_list, struct pool_arena, entry ) { alloc += arena->end - (char *)arena; used += arena->current - (char*)arena; num++; } LIST_FOR_EACH_ENTRY( arena, &pool->arena_full, struct pool_arena, entry ) { alloc += arena->end - (char *)arena; used += arena->current - (char*)arena; num++; } if (alloc == 0) alloc = 1; /* avoid division by zero */ FIXME("STATS: pool %p has allocated %u kbytes, used %u kbytes in %u arenas, non-allocation ratio: %.2f%%\n", pool, (unsigned)(alloc >> 10), (unsigned)(used >> 10), (unsigned)num, 100.0 - (float)used / (float)alloc * 100.0); #endif LIST_FOR_EACH_ENTRY_SAFE( arena, next, &pool->arena_list, struct pool_arena, entry ) { list_remove( &arena->entry ); HeapFree(GetProcessHeap(), 0, arena); } LIST_FOR_EACH_ENTRY_SAFE( arena, next, &pool->arena_full, struct pool_arena, entry ) { list_remove( &arena->entry ); HeapFree(GetProcessHeap(), 0, arena); } } void* pool_alloc(struct pool* pool, size_t len) { struct pool_arena* arena; void* ret; size_t size; len = (len + 3) & ~3; /* round up size on DWORD boundary */ LIST_FOR_EACH_ENTRY( arena, &pool->arena_list, struct pool_arena, entry ) { if (arena->end - arena->current >= len) { ret = arena->current; arena->current += len; if (arena->current + 16 >= arena->end) { list_remove( &arena->entry ); list_add_tail( &pool->arena_full, &arena->entry ); } return ret; } } size = max( pool->arena_size, len ); arena = HeapAlloc(GetProcessHeap(), 0, size + sizeof(struct pool_arena)); if (!arena) return NULL; ret = arena + 1; arena->current = (char*)ret + len; arena->end = (char*)ret + size; if (arena->current + 16 >= arena->end) list_add_tail( &pool->arena_full, &arena->entry ); else list_add_head( &pool->arena_list, &arena->entry ); return ret; } char* pool_strdup(struct pool* pool, const char* str) { char* ret; if ((ret = pool_alloc(pool, strlen(str) + 1))) strcpy(ret, str); return ret; } void vector_init(struct vector* v, unsigned esz, unsigned bucket_sz) { v->buckets = NULL; /* align size on DWORD boundaries */ v->elt_size = (esz + 3) & ~3; switch (bucket_sz) { case 2: v->shift = 1; break; case 4: v->shift = 2; break; case 8: v->shift = 3; break; case 16: v->shift = 4; break; case 32: v->shift = 5; break; case 64: v->shift = 6; break; case 128: v->shift = 7; break; case 256: v->shift = 8; break; case 512: v->shift = 9; break; case 1024: v->shift = 10; break; default: assert(0); } v->num_buckets = 0; v->buckets_allocated = 0; v->num_elts = 0; } unsigned vector_length(const struct vector* v) { return v->num_elts; } void* vector_at(const struct vector* v, unsigned pos) { unsigned o; if (pos >= v->num_elts) return NULL; o = pos & ((1 << v->shift) - 1); return (char*)v->buckets[pos >> v->shift] + o * v->elt_size; } void* vector_add(struct vector* v, struct pool* pool) { unsigned ncurr = v->num_elts++; /* check that we don't wrap around */ assert(v->num_elts > ncurr); if (ncurr == (v->num_buckets << v->shift)) { if(v->num_buckets == v->buckets_allocated) { /* Double the bucket cache, so it scales well with big vectors.*/ unsigned new_reserved; void* new; new_reserved = 2*v->buckets_allocated; if(new_reserved == 0) new_reserved = 1; /* Don't even try to resize memory. Pool datastructure is very inefficient with reallocs. */ new = pool_alloc(pool, new_reserved * sizeof(void*)); memcpy(new, v->buckets, v->buckets_allocated * sizeof(void*)); v->buckets = new; v->buckets_allocated = new_reserved; } v->buckets[v->num_buckets] = pool_alloc(pool, v->elt_size << v->shift); return v->buckets[v->num_buckets++]; } return vector_at(v, ncurr); } /* We construct the sparse array as two vectors (of equal size) * The first vector (key2index) is the lookup table between the key and * an index in the second vector (elements) * When inserting an element, it's always appended in second vector (and * never moved in memory later on), only the first vector is reordered */ struct key2index { unsigned long key; unsigned index; }; void sparse_array_init(struct sparse_array* sa, unsigned elt_sz, unsigned bucket_sz) { vector_init(&sa->key2index, sizeof(struct key2index), bucket_sz); vector_init(&sa->elements, elt_sz, bucket_sz); } /****************************************************************** * sparse_array_lookup * * Returns the first index which key is >= at passed key */ static struct key2index* sparse_array_lookup(const struct sparse_array* sa, unsigned long key, unsigned* idx) { struct key2index* pk2i; unsigned low, high; if (!sa->elements.num_elts) { *idx = 0; return NULL; } high = sa->elements.num_elts; pk2i = vector_at(&sa->key2index, high - 1); if (pk2i->key < key) { *idx = high; return NULL; } if (pk2i->key == key) { *idx = high - 1; return pk2i; } low = 0; pk2i = vector_at(&sa->key2index, low); if (pk2i->key >= key) { *idx = 0; return pk2i; } /* now we have: sa(lowest key) < key < sa(highest key) */ while (low < high) { *idx = (low + high) / 2; pk2i = vector_at(&sa->key2index, *idx); if (pk2i->key > key) high = *idx; else if (pk2i->key < key) low = *idx + 1; else return pk2i; } /* binary search could return exact item, we search for highest one * below the key */ if (pk2i->key < key) pk2i = vector_at(&sa->key2index, ++(*idx)); return pk2i; } void* sparse_array_find(const struct sparse_array* sa, unsigned long key) { unsigned idx; struct key2index* pk2i; if ((pk2i = sparse_array_lookup(sa, key, &idx)) && pk2i->key == key) return vector_at(&sa->elements, pk2i->index); return NULL; } void* sparse_array_add(struct sparse_array* sa, unsigned long key, struct pool* pool) { unsigned idx, i; struct key2index* pk2i; struct key2index* to; pk2i = sparse_array_lookup(sa, key, &idx); if (pk2i && pk2i->key == key) { FIXME("re-adding an existing key\n"); return NULL; } to = vector_add(&sa->key2index, pool); if (pk2i) { /* we need to shift vector's content... */ /* let's do it brute force... (FIXME) */ assert(sa->key2index.num_elts >= 2); for (i = sa->key2index.num_elts - 1; i > idx; i--) { pk2i = vector_at(&sa->key2index, i - 1); *to = *pk2i; to = pk2i; } } to->key = key; to->index = sa->elements.num_elts; return vector_add(&sa->elements, pool); } unsigned sparse_array_length(const struct sparse_array* sa) { return sa->elements.num_elts; } static unsigned hash_table_hash(const char* name, unsigned num_buckets) { unsigned hash = 0; while (*name) { hash += *name++; hash += (hash << 10); hash ^= (hash >> 6); } hash += (hash << 3); hash ^= (hash >> 11); hash += (hash << 15); return hash % num_buckets; } void hash_table_init(struct pool* pool, struct hash_table* ht, unsigned num_buckets) { ht->num_elts = 0; ht->num_buckets = num_buckets; ht->pool = pool; ht->buckets = NULL; } void hash_table_destroy(struct hash_table* ht) { #if defined(USE_STATS) int i; unsigned len; unsigned min = 0xffffffff, max = 0, sq = 0; struct hash_table_elt* elt; double mean, variance; for (i = 0; i < ht->num_buckets; i++) { for (len = 0, elt = ht->buckets[i]; elt; elt = elt->next) len++; if (len < min) min = len; if (len > max) max = len; sq += len * len; } mean = (double)ht->num_elts / ht->num_buckets; variance = (double)sq / ht->num_buckets - mean * mean; FIXME("STATS: elts[num:%-4u size:%u mean:%f] buckets[min:%-4u variance:%+f max:%-4u]\n", ht->num_elts, ht->num_buckets, mean, min, variance, max); for (i = 0; i < ht->num_buckets; i++) { for (len = 0, elt = ht->buckets[i]; elt; elt = elt->next) len++; if (len == max) { FIXME("Longest bucket:\n"); for (elt = ht->buckets[i]; elt; elt = elt->next) FIXME("\t%s\n", elt->name); break; } } #endif } void hash_table_add(struct hash_table* ht, struct hash_table_elt* elt) { unsigned hash = hash_table_hash(elt->name, ht->num_buckets); if (!ht->buckets) { ht->buckets = pool_alloc(ht->pool, ht->num_buckets * sizeof(struct hash_table_bucket)); assert(ht->buckets); memset(ht->buckets, 0, ht->num_buckets * sizeof(struct hash_table_bucket)); } /* in some cases, we need to get back the symbols of same name in the order * in which they've been inserted. So insert new elements at the end of the list. */ if (!ht->buckets[hash].first) { ht->buckets[hash].first = elt; } else { ht->buckets[hash].last->next = elt; } ht->buckets[hash].last = elt; elt->next = NULL; ht->num_elts++; } void hash_table_iter_init(const struct hash_table* ht, struct hash_table_iter* hti, const char* name) { hti->ht = ht; if (name) { hti->last = hash_table_hash(name, ht->num_buckets); hti->index = hti->last - 1; } else { hti->last = ht->num_buckets - 1; hti->index = -1; } hti->element = NULL; } void* hash_table_iter_up(struct hash_table_iter* hti) { if (!hti->ht->buckets) return NULL; if (hti->element) hti->element = hti->element->next; while (!hti->element && hti->index < hti->last) hti->element = hti->ht->buckets[++hti->index].first; return hti->element; }