/* * Copyright (C) 2007 Google (Evan Stade) * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA */ #include <stdarg.h> #include <math.h> #include "windef.h" #include "winbase.h" #include "winerror.h" #include "wine/debug.h" #include "wingdi.h" #include "objbase.h" #include "winreg.h" #include "shlwapi.h" #include "gdiplus.h" #include "gdiplus_private.h" WINE_DEFAULT_DEBUG_CHANNEL(gdiplus); static Status WINAPI NotificationHook(ULONG_PTR *token) { TRACE("%p\n", token); if(!token) return InvalidParameter; return Ok; } static void WINAPI NotificationUnhook(ULONG_PTR token) { TRACE("%ld\n", token); } /***************************************************** * DllMain */ BOOL WINAPI DllMain(HINSTANCE hinst, DWORD reason, LPVOID reserved) { TRACE("(%p, %d, %p)\n", hinst, reason, reserved); switch(reason) { case DLL_WINE_PREATTACH: return FALSE; /* prefer native version */ case DLL_PROCESS_ATTACH: DisableThreadLibraryCalls( hinst ); break; } return TRUE; } /***************************************************** * GdiplusStartup [GDIPLUS.@] */ Status WINAPI GdiplusStartup(ULONG_PTR *token, const struct GdiplusStartupInput *input, struct GdiplusStartupOutput *output) { if(!token || !input) return InvalidParameter; TRACE("%p %p %p\n", token, input, output); TRACE("GdiplusStartupInput %d %p %d %d\n", input->GdiplusVersion, input->DebugEventCallback, input->SuppressBackgroundThread, input->SuppressExternalCodecs); if(input->GdiplusVersion != 1) return UnsupportedGdiplusVersion; if(input->SuppressBackgroundThread){ if(!output) return InvalidParameter; output->NotificationHook = NotificationHook; output->NotificationUnhook = NotificationUnhook; } *token = 0xdeadbeef; /* FIXME: DebugEventCallback ignored */ return Ok; } GpStatus WINAPI GdiplusNotificationHook(ULONG_PTR *token) { FIXME("%p\n", token); return NotificationHook(token); } void WINAPI GdiplusNotificationUnhook(ULONG_PTR token) { FIXME("%ld\n", token); NotificationUnhook(token); } /***************************************************** * GdiplusShutdown [GDIPLUS.@] */ void WINAPI GdiplusShutdown(ULONG_PTR token) { /* FIXME: no object tracking */ } /***************************************************** * GdipAlloc [GDIPLUS.@] */ void* WINGDIPAPI GdipAlloc(SIZE_T size) { return HeapAlloc(GetProcessHeap(), HEAP_ZERO_MEMORY, size); } /***************************************************** * GdipFree [GDIPLUS.@] */ void WINGDIPAPI GdipFree(void* ptr) { HeapFree(GetProcessHeap(), 0, ptr); } /* Calculates the bezier points needed to fill in the arc portion starting at * angle start and ending at end. These two angles should be no more than 90 * degrees from each other. x1, y1, x2, y2 describes the bounding box (upper * left and width and height). Angles must be in radians. write_first indicates * that the first bezier point should be written out (usually this is false). * pt is the array of GpPointFs that gets written to. **/ static void add_arc_part(GpPointF * pt, REAL x1, REAL y1, REAL x2, REAL y2, REAL start, REAL end, BOOL write_first) { REAL center_x, center_y, rad_x, rad_y, cos_start, cos_end, sin_start, sin_end, a, half; INT i; rad_x = x2 / 2.0; rad_y = y2 / 2.0; center_x = x1 + rad_x; center_y = y1 + rad_y; cos_start = cos(start); cos_end = cos(end); sin_start = sin(start); sin_end = sin(end); half = (end - start) / 2.0; a = 4.0 / 3.0 * (1 - cos(half)) / sin(half); if(write_first){ pt[0].X = cos_start; pt[0].Y = sin_start; } pt[1].X = cos_start - a * sin_start; pt[1].Y = sin_start + a * cos_start; pt[3].X = cos_end; pt[3].Y = sin_end; pt[2].X = cos_end + a * sin_end; pt[2].Y = sin_end - a * cos_end; /* expand the points back from the unit circle to the ellipse */ for(i = (write_first ? 0 : 1); i < 4; i ++){ pt[i].X = pt[i].X * rad_x + center_x; pt[i].Y = pt[i].Y * rad_y + center_y; } } /* We plot the curve as if it is on a circle then stretch the points. This * adjusts the angles so that when we stretch the points they will end in the * right place. This is only complicated because atan and atan2 do not behave * conveniently. */ static void unstretch_angle(REAL * angle, REAL rad_x, REAL rad_y) { REAL stretched; INT revs_off; *angle = deg2rad(*angle); if(fabs(cos(*angle)) < 0.00001 || fabs(sin(*angle)) < 0.00001) return; stretched = gdiplus_atan2(sin(*angle) / fabs(rad_y), cos(*angle) / fabs(rad_x)); revs_off = roundr(*angle / (2.0 * M_PI)) - roundr(stretched / (2.0 * M_PI)); stretched += ((REAL)revs_off) * M_PI * 2.0; *angle = stretched; } /* Stores the bezier points that correspond to the arc in points. If points is * null, just return the number of points needed to represent the arc. */ INT arc2polybezier(GpPointF * points, REAL x1, REAL y1, REAL x2, REAL y2, REAL startAngle, REAL sweepAngle) { INT i, count; REAL end_angle, start_angle, endAngle; endAngle = startAngle + sweepAngle; unstretch_angle(&startAngle, x2 / 2.0, y2 / 2.0); unstretch_angle(&endAngle, x2 / 2.0, y2 / 2.0); count = ceilf(fabs(endAngle - startAngle) / M_PI_2) * 3 + 1; /* don't make more than a full circle */ count = min(MAX_ARC_PTS, count); if(count == 1) return 0; if(!points) return count; /* start_angle and end_angle are the iterative variables */ start_angle = startAngle; for(i = 0; i < count - 1; i += 3){ /* check if we've overshot the end angle */ if( sweepAngle > 0.0 ) end_angle = min(start_angle + M_PI_2, endAngle); else end_angle = max(start_angle - M_PI_2, endAngle); add_arc_part(&points[i], x1, y1, x2, y2, start_angle, end_angle, i == 0); start_angle += M_PI_2 * (sweepAngle < 0.0 ? -1.0 : 1.0); } return count; } COLORREF ARGB2COLORREF(ARGB color) { /* Packing of these color structures: COLORREF: 00bbggrr ARGB: aarrggbb FIXME:doesn't handle alpha channel */ return ((color & 0x0000ff) << 16) + (color & 0x00ff00) + ((color & 0xff0000) >> 16); } /* Like atan2, but puts angle in correct quadrant if dx is 0. */ REAL gdiplus_atan2(REAL dy, REAL dx) { if((dx == 0.0) && (dy != 0.0)) return dy > 0.0 ? M_PI_2 : -M_PI_2; return atan2(dy, dx); } GpStatus hresult_to_status(HRESULT res) { switch(res){ case S_OK: return Ok; case E_OUTOFMEMORY: return OutOfMemory; case E_INVALIDARG: return InvalidParameter; default: return GenericError; } } /* converts a given unit to its value in pixels */ REAL convert_unit(HDC hdc, GpUnit unit) { switch(unit) { case UnitInch: return (REAL) GetDeviceCaps(hdc, LOGPIXELSX); case UnitPoint: return ((REAL)GetDeviceCaps(hdc, LOGPIXELSX)) / 72.0; case UnitDocument: return ((REAL)GetDeviceCaps(hdc, LOGPIXELSX)) / 300.0; case UnitMillimeter: return ((REAL)GetDeviceCaps(hdc, LOGPIXELSX)) / 25.4; case UnitWorld: ERR("cannot convert UnitWorld\n"); return 0.0; case UnitPixel: case UnitDisplay: default: return 1.0; } } /* Calculates Bezier points from cardinal spline points. */ void calc_curve_bezier(CONST GpPointF *pts, REAL tension, REAL *x1, REAL *y1, REAL *x2, REAL *y2) { REAL xdiff, ydiff; /* calculate tangent */ xdiff = pts[2].X - pts[0].X; ydiff = pts[2].Y - pts[0].Y; /* apply tangent to get control points */ *x1 = pts[1].X - tension * xdiff; *y1 = pts[1].Y - tension * ydiff; *x2 = pts[1].X + tension * xdiff; *y2 = pts[1].Y + tension * ydiff; } /* Calculates Bezier points from cardinal spline endpoints. */ void calc_curve_bezier_endp(REAL xend, REAL yend, REAL xadj, REAL yadj, REAL tension, REAL *x, REAL *y) { /* tangent at endpoints is the line from the endpoint to the adjacent point */ *x = roundr(tension * (xadj - xend) + xend); *y = roundr(tension * (yadj - yend) + yend); } /* make sure path has enough space for len more points */ BOOL lengthen_path(GpPath *path, INT len) { /* initial allocation */ if(path->datalen == 0){ path->datalen = len * 2; path->pathdata.Points = GdipAlloc(path->datalen * sizeof(PointF)); if(!path->pathdata.Points) return FALSE; path->pathdata.Types = GdipAlloc(path->datalen); if(!path->pathdata.Types){ GdipFree(path->pathdata.Points); return FALSE; } } /* reallocation, double size of arrays */ else if(path->datalen - path->pathdata.Count < len){ while(path->datalen - path->pathdata.Count < len) path->datalen *= 2; path->pathdata.Points = HeapReAlloc(GetProcessHeap(), 0, path->pathdata.Points, path->datalen * sizeof(PointF)); if(!path->pathdata.Points) return FALSE; path->pathdata.Types = HeapReAlloc(GetProcessHeap(), 0, path->pathdata.Types, path->datalen); if(!path->pathdata.Types) return FALSE; } return TRUE; } /* recursive deletion of GpRegion nodes */ inline void delete_element(region_element* element) { switch(element->type) { case RegionDataRect: break; case RegionDataPath: GdipDeletePath(element->elementdata.pathdata.path); break; case RegionDataEmptyRect: case RegionDataInfiniteRect: break; default: delete_element(element->elementdata.combine.left); delete_element(element->elementdata.combine.right); GdipFree(element->elementdata.combine.left); GdipFree(element->elementdata.combine.right); break; } }