/* * RPC messages * * Copyright 2001-2002 Ove Kåven, TransGaming Technologies * Copyright 2004 Filip Navara * Copyright 2006 CodeWeavers * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA */ #include <stdarg.h> #include <stdio.h> #include <string.h> #include "windef.h" #include "winbase.h" #include "winerror.h" #include "winuser.h" #include "rpc.h" #include "rpcndr.h" #include "rpcdcep.h" #include "wine/debug.h" #include "rpc_binding.h" #include "rpc_defs.h" #include "rpc_message.h" #include "ncastatus.h" WINE_DEFAULT_DEBUG_CHANNEL(rpc); /* note: the DCE/RPC spec says the alignment amount should be 4, but * MS/RPC servers seem to always use 16 */ #define AUTH_ALIGNMENT 16 /* gets the amount needed to round a value up to the specified alignment */ #define ROUND_UP_AMOUNT(value, alignment) \ (((alignment) - (((value) % (alignment)))) % (alignment)) #define ROUND_UP(value, alignment) (((value) + ((alignment) - 1)) & ~((alignment)-1)) enum secure_packet_direction { SECURE_PACKET_SEND, SECURE_PACKET_RECEIVE }; static RPC_STATUS I_RpcReAllocateBuffer(PRPC_MESSAGE pMsg); DWORD RPCRT4_GetHeaderSize(const RpcPktHdr *Header) { static const DWORD header_sizes[] = { sizeof(Header->request), 0, sizeof(Header->response), sizeof(Header->fault), 0, 0, 0, 0, 0, 0, 0, sizeof(Header->bind), sizeof(Header->bind_ack), sizeof(Header->bind_nack), 0, 0, 0, 0, 0, 0, sizeof(Header->http) }; ULONG ret = 0; if (Header->common.ptype < sizeof(header_sizes) / sizeof(header_sizes[0])) { ret = header_sizes[Header->common.ptype]; if (ret == 0) FIXME("unhandled packet type\n"); if (Header->common.flags & RPC_FLG_OBJECT_UUID) ret += sizeof(UUID); } else { WARN("invalid packet type %u\n", Header->common.ptype); } return ret; } static int packet_has_body(const RpcPktHdr *Header) { return (Header->common.ptype == PKT_FAULT) || (Header->common.ptype == PKT_REQUEST) || (Header->common.ptype == PKT_RESPONSE); } static int packet_has_auth_verifier(const RpcPktHdr *Header) { return !(Header->common.ptype == PKT_BIND_NACK) && !(Header->common.ptype == PKT_SHUTDOWN); } static VOID RPCRT4_BuildCommonHeader(RpcPktHdr *Header, unsigned char PacketType, ULONG DataRepresentation) { Header->common.rpc_ver = RPC_VER_MAJOR; Header->common.rpc_ver_minor = RPC_VER_MINOR; Header->common.ptype = PacketType; Header->common.drep[0] = LOBYTE(LOWORD(DataRepresentation)); Header->common.drep[1] = HIBYTE(LOWORD(DataRepresentation)); Header->common.drep[2] = LOBYTE(HIWORD(DataRepresentation)); Header->common.drep[3] = HIBYTE(HIWORD(DataRepresentation)); Header->common.auth_len = 0; Header->common.call_id = 1; Header->common.flags = 0; /* Flags and fragment length are computed in RPCRT4_Send. */ } static RpcPktHdr *RPCRT4_BuildRequestHeader(ULONG DataRepresentation, ULONG BufferLength, unsigned short ProcNum, UUID *ObjectUuid) { RpcPktHdr *header; BOOL has_object; RPC_STATUS status; has_object = (ObjectUuid != NULL && !UuidIsNil(ObjectUuid, &status)); header = HeapAlloc(GetProcessHeap(), HEAP_ZERO_MEMORY, sizeof(header->request) + (has_object ? sizeof(UUID) : 0)); if (header == NULL) { return NULL; } RPCRT4_BuildCommonHeader(header, PKT_REQUEST, DataRepresentation); header->common.frag_len = sizeof(header->request); header->request.alloc_hint = BufferLength; header->request.context_id = 0; header->request.opnum = ProcNum; if (has_object) { header->common.flags |= RPC_FLG_OBJECT_UUID; header->common.frag_len += sizeof(UUID); memcpy(&header->request + 1, ObjectUuid, sizeof(UUID)); } return header; } RpcPktHdr *RPCRT4_BuildResponseHeader(ULONG DataRepresentation, ULONG BufferLength) { RpcPktHdr *header; header = HeapAlloc(GetProcessHeap(), HEAP_ZERO_MEMORY, sizeof(header->response)); if (header == NULL) { return NULL; } RPCRT4_BuildCommonHeader(header, PKT_RESPONSE, DataRepresentation); header->common.frag_len = sizeof(header->response); header->response.alloc_hint = BufferLength; return header; } RpcPktHdr *RPCRT4_BuildFaultHeader(ULONG DataRepresentation, RPC_STATUS Status) { RpcPktHdr *header; header = HeapAlloc(GetProcessHeap(), HEAP_ZERO_MEMORY, sizeof(header->fault)); if (header == NULL) { return NULL; } RPCRT4_BuildCommonHeader(header, PKT_FAULT, DataRepresentation); header->common.frag_len = sizeof(header->fault); header->fault.status = Status; return header; } RpcPktHdr *RPCRT4_BuildBindHeader(ULONG DataRepresentation, unsigned short MaxTransmissionSize, unsigned short MaxReceiveSize, ULONG AssocGroupId, const RPC_SYNTAX_IDENTIFIER *AbstractId, const RPC_SYNTAX_IDENTIFIER *TransferId) { RpcPktHdr *header; RpcContextElement *ctxt_elem; header = HeapAlloc(GetProcessHeap(), HEAP_ZERO_MEMORY, sizeof(header->bind) + FIELD_OFFSET(RpcContextElement, transfer_syntaxes[1])); if (header == NULL) { return NULL; } ctxt_elem = (RpcContextElement *)(&header->bind + 1); RPCRT4_BuildCommonHeader(header, PKT_BIND, DataRepresentation); header->common.frag_len = sizeof(header->bind) + FIELD_OFFSET(RpcContextElement, transfer_syntaxes[1]); header->bind.max_tsize = MaxTransmissionSize; header->bind.max_rsize = MaxReceiveSize; header->bind.assoc_gid = AssocGroupId; header->bind.num_elements = 1; ctxt_elem->num_syntaxes = 1; ctxt_elem->abstract_syntax = *AbstractId; ctxt_elem->transfer_syntaxes[0] = *TransferId; return header; } static RpcPktHdr *RPCRT4_BuildAuthHeader(ULONG DataRepresentation) { RpcPktHdr *header; header = HeapAlloc(GetProcessHeap(), HEAP_ZERO_MEMORY, sizeof(header->common) + 12); if (header == NULL) return NULL; RPCRT4_BuildCommonHeader(header, PKT_AUTH3, DataRepresentation); header->common.frag_len = 0x14; header->common.auth_len = 0; return header; } RpcPktHdr *RPCRT4_BuildBindNackHeader(ULONG DataRepresentation, unsigned char RpcVersion, unsigned char RpcVersionMinor, unsigned short RejectReason) { RpcPktHdr *header; header = HeapAlloc(GetProcessHeap(), HEAP_ZERO_MEMORY, FIELD_OFFSET(RpcPktHdr, bind_nack.protocols[1])); if (header == NULL) { return NULL; } RPCRT4_BuildCommonHeader(header, PKT_BIND_NACK, DataRepresentation); header->common.frag_len = FIELD_OFFSET(RpcPktHdr, bind_nack.protocols[1]); header->bind_nack.reject_reason = RejectReason; header->bind_nack.protocols_count = 1; header->bind_nack.protocols[0].rpc_ver = RpcVersion; header->bind_nack.protocols[0].rpc_ver_minor = RpcVersionMinor; return header; } RpcPktHdr *RPCRT4_BuildBindAckHeader(ULONG DataRepresentation, unsigned short MaxTransmissionSize, unsigned short MaxReceiveSize, ULONG AssocGroupId, LPCSTR ServerAddress, unsigned char ResultCount, const RpcResult *Results) { RpcPktHdr *header; ULONG header_size; RpcAddressString *server_address; RpcResultList *results; header_size = sizeof(header->bind_ack) + ROUND_UP(FIELD_OFFSET(RpcAddressString, string[strlen(ServerAddress) + 1]), 4) + FIELD_OFFSET(RpcResultList, results[ResultCount]); header = HeapAlloc(GetProcessHeap(), HEAP_ZERO_MEMORY, header_size); if (header == NULL) { return NULL; } RPCRT4_BuildCommonHeader(header, PKT_BIND_ACK, DataRepresentation); header->common.frag_len = header_size; header->bind_ack.max_tsize = MaxTransmissionSize; header->bind_ack.max_rsize = MaxReceiveSize; header->bind_ack.assoc_gid = AssocGroupId; server_address = (RpcAddressString*)(&header->bind_ack + 1); server_address->length = strlen(ServerAddress) + 1; strcpy(server_address->string, ServerAddress); /* results is 4-byte aligned */ results = (RpcResultList*)((ULONG_PTR)server_address + ROUND_UP(FIELD_OFFSET(RpcAddressString, string[server_address->length]), 4)); results->num_results = ResultCount; memcpy(&results->results[0], Results, ResultCount * sizeof(*Results)); return header; } RpcPktHdr *RPCRT4_BuildHttpHeader(ULONG DataRepresentation, unsigned short flags, unsigned short num_data_items, unsigned int payload_size) { RpcPktHdr *header; header = HeapAlloc(GetProcessHeap(), HEAP_ZERO_MEMORY, sizeof(header->http) + payload_size); if (header == NULL) { ERR("failed to allocate memory\n"); return NULL; } RPCRT4_BuildCommonHeader(header, PKT_HTTP, DataRepresentation); /* since the packet isn't current sent using RPCRT4_Send, set the flags * manually here */ header->common.flags = RPC_FLG_FIRST|RPC_FLG_LAST; header->common.call_id = 0; header->common.frag_len = sizeof(header->http) + payload_size; header->http.flags = flags; header->http.num_data_items = num_data_items; return header; } #define WRITE_HTTP_PAYLOAD_FIELD_UINT32(payload, type, value) \ do { \ *(unsigned int *)(payload) = (type); \ (payload) += 4; \ *(unsigned int *)(payload) = (value); \ (payload) += 4; \ } while (0) #define WRITE_HTTP_PAYLOAD_FIELD_UUID(payload, type, uuid) \ do { \ *(unsigned int *)(payload) = (type); \ (payload) += 4; \ *(UUID *)(payload) = (uuid); \ (payload) += sizeof(UUID); \ } while (0) #define WRITE_HTTP_PAYLOAD_FIELD_FLOW_CONTROL(payload, bytes_transmitted, flow_control_increment, uuid) \ do { \ *(unsigned int *)(payload) = 0x00000001; \ (payload) += 4; \ *(unsigned int *)(payload) = (bytes_transmitted); \ (payload) += 4; \ *(unsigned int *)(payload) = (flow_control_increment); \ (payload) += 4; \ *(UUID *)(payload) = (uuid); \ (payload) += sizeof(UUID); \ } while (0) RpcPktHdr *RPCRT4_BuildHttpConnectHeader(unsigned short flags, int out_pipe, const UUID *connection_uuid, const UUID *pipe_uuid, const UUID *association_uuid) { RpcPktHdr *header; unsigned int size; char *payload; size = 8 + 4 + sizeof(UUID) + 4 + sizeof(UUID) + 8; if (!out_pipe) size += 8 + 4 + sizeof(UUID); header = RPCRT4_BuildHttpHeader(NDR_LOCAL_DATA_REPRESENTATION, flags, out_pipe ? 4 : 6, size); if (!header) return NULL; payload = (char *)(&header->http+1); /* FIXME: what does this part of the payload do? */ WRITE_HTTP_PAYLOAD_FIELD_UINT32(payload, 0x00000006, 0x00000001); WRITE_HTTP_PAYLOAD_FIELD_UUID(payload, 0x00000003, *connection_uuid); WRITE_HTTP_PAYLOAD_FIELD_UUID(payload, 0x00000003, *pipe_uuid); if (out_pipe) /* FIXME: what does this part of the payload do? */ WRITE_HTTP_PAYLOAD_FIELD_UINT32(payload, 0x00000000, 0x00010000); else { /* FIXME: what does this part of the payload do? */ WRITE_HTTP_PAYLOAD_FIELD_UINT32(payload, 0x00000004, 0x40000000); /* FIXME: what does this part of the payload do? */ WRITE_HTTP_PAYLOAD_FIELD_UINT32(payload, 0x00000005, 0x000493e0); WRITE_HTTP_PAYLOAD_FIELD_UUID(payload, 0x0000000c, *association_uuid); } return header; } RpcPktHdr *RPCRT4_BuildHttpFlowControlHeader(BOOL server, ULONG bytes_transmitted, ULONG flow_control_increment, const UUID *pipe_uuid) { RpcPktHdr *header; char *payload; header = RPCRT4_BuildHttpHeader(NDR_LOCAL_DATA_REPRESENTATION, 0x2, 2, 5 * sizeof(ULONG) + sizeof(UUID)); if (!header) return NULL; payload = (char *)(&header->http+1); WRITE_HTTP_PAYLOAD_FIELD_UINT32(payload, 0x0000000d, (server ? 0x0 : 0x3)); WRITE_HTTP_PAYLOAD_FIELD_FLOW_CONTROL(payload, bytes_transmitted, flow_control_increment, *pipe_uuid); return header; } VOID RPCRT4_FreeHeader(RpcPktHdr *Header) { HeapFree(GetProcessHeap(), 0, Header); } NCA_STATUS RPC2NCA_STATUS(RPC_STATUS status) { switch (status) { case ERROR_INVALID_HANDLE: return NCA_S_FAULT_CONTEXT_MISMATCH; case ERROR_OUTOFMEMORY: return NCA_S_FAULT_REMOTE_NO_MEMORY; case RPC_S_NOT_LISTENING: return NCA_S_SERVER_TOO_BUSY; case RPC_S_UNKNOWN_IF: return NCA_S_UNK_IF; case RPC_S_SERVER_TOO_BUSY: return NCA_S_SERVER_TOO_BUSY; case RPC_S_CALL_FAILED: return NCA_S_FAULT_UNSPEC; case RPC_S_CALL_FAILED_DNE: return NCA_S_MANAGER_NOT_ENTERED; case RPC_S_PROTOCOL_ERROR: return NCA_S_PROTO_ERROR; case RPC_S_UNSUPPORTED_TYPE: return NCA_S_UNSUPPORTED_TYPE; case RPC_S_INVALID_TAG: return NCA_S_FAULT_INVALID_TAG; case RPC_S_INVALID_BOUND: return NCA_S_FAULT_INVALID_BOUND; case RPC_S_PROCNUM_OUT_OF_RANGE: return NCA_S_OP_RNG_ERROR; case RPC_X_SS_HANDLES_MISMATCH: return NCA_S_FAULT_CONTEXT_MISMATCH; case RPC_S_CALL_CANCELLED: return NCA_S_FAULT_CANCEL; case RPC_S_COMM_FAILURE: return NCA_S_COMM_FAILURE; case RPC_X_WRONG_PIPE_ORDER: return NCA_S_FAULT_PIPE_ORDER; case RPC_X_PIPE_CLOSED: return NCA_S_FAULT_PIPE_CLOSED; case RPC_X_PIPE_DISCIPLINE_ERROR: return NCA_S_FAULT_PIPE_DISCIPLINE; case RPC_X_PIPE_EMPTY: return NCA_S_FAULT_PIPE_EMPTY; case STATUS_FLOAT_DIVIDE_BY_ZERO: return NCA_S_FAULT_FP_DIV_ZERO; case STATUS_FLOAT_INVALID_OPERATION: return NCA_S_FAULT_FP_ERROR; case STATUS_FLOAT_OVERFLOW: return NCA_S_FAULT_FP_OVERFLOW; case STATUS_FLOAT_UNDERFLOW: return NCA_S_FAULT_FP_UNDERFLOW; case STATUS_INTEGER_DIVIDE_BY_ZERO: return NCA_S_FAULT_INT_DIV_BY_ZERO; case STATUS_INTEGER_OVERFLOW: return NCA_S_FAULT_INT_OVERFLOW; default: return status; } } static RPC_STATUS NCA2RPC_STATUS(NCA_STATUS status) { switch (status) { case NCA_S_COMM_FAILURE: return RPC_S_COMM_FAILURE; case NCA_S_OP_RNG_ERROR: return RPC_S_PROCNUM_OUT_OF_RANGE; case NCA_S_UNK_IF: return RPC_S_UNKNOWN_IF; case NCA_S_YOU_CRASHED: return RPC_S_CALL_FAILED; case NCA_S_PROTO_ERROR: return RPC_S_PROTOCOL_ERROR; case NCA_S_OUT_ARGS_TOO_BIG: return ERROR_NOT_ENOUGH_SERVER_MEMORY; case NCA_S_SERVER_TOO_BUSY: return RPC_S_SERVER_TOO_BUSY; case NCA_S_UNSUPPORTED_TYPE: return RPC_S_UNSUPPORTED_TYPE; case NCA_S_FAULT_INT_DIV_BY_ZERO: return RPC_S_ZERO_DIVIDE; case NCA_S_FAULT_ADDR_ERROR: return RPC_S_ADDRESS_ERROR; case NCA_S_FAULT_FP_DIV_ZERO: return RPC_S_FP_DIV_ZERO; case NCA_S_FAULT_FP_UNDERFLOW: return RPC_S_FP_UNDERFLOW; case NCA_S_FAULT_FP_OVERFLOW: return RPC_S_FP_OVERFLOW; case NCA_S_FAULT_INVALID_TAG: return RPC_S_INVALID_TAG; case NCA_S_FAULT_INVALID_BOUND: return RPC_S_INVALID_BOUND; case NCA_S_RPC_VERSION_MISMATCH: return RPC_S_PROTOCOL_ERROR; case NCA_S_UNSPEC_REJECT: return RPC_S_CALL_FAILED_DNE; case NCA_S_BAD_ACTID: return RPC_S_CALL_FAILED_DNE; case NCA_S_WHO_ARE_YOU_FAILED: return RPC_S_CALL_FAILED; case NCA_S_MANAGER_NOT_ENTERED: return RPC_S_CALL_FAILED_DNE; case NCA_S_FAULT_CANCEL: return RPC_S_CALL_CANCELLED; case NCA_S_FAULT_ILL_INST: return RPC_S_ADDRESS_ERROR; case NCA_S_FAULT_FP_ERROR: return RPC_S_FP_OVERFLOW; case NCA_S_FAULT_INT_OVERFLOW: return RPC_S_ADDRESS_ERROR; case NCA_S_FAULT_UNSPEC: return RPC_S_CALL_FAILED; case NCA_S_FAULT_PIPE_EMPTY: return RPC_X_PIPE_EMPTY; case NCA_S_FAULT_PIPE_CLOSED: return RPC_X_PIPE_CLOSED; case NCA_S_FAULT_PIPE_ORDER: return RPC_X_WRONG_PIPE_ORDER; case NCA_S_FAULT_PIPE_DISCIPLINE: return RPC_X_PIPE_DISCIPLINE_ERROR; case NCA_S_FAULT_PIPE_COMM_ERROR: return RPC_S_COMM_FAILURE; case NCA_S_FAULT_PIPE_MEMORY: return ERROR_OUTOFMEMORY; case NCA_S_FAULT_CONTEXT_MISMATCH: return ERROR_INVALID_HANDLE; case NCA_S_FAULT_REMOTE_NO_MEMORY: return ERROR_NOT_ENOUGH_SERVER_MEMORY; default: return status; } } /* assumes the common header fields have already been validated */ BOOL RPCRT4_IsValidHttpPacket(RpcPktHdr *hdr, unsigned char *data, unsigned short data_len) { unsigned short i; BYTE *p = data; for (i = 0; i < hdr->http.num_data_items; i++) { ULONG type; if (data_len < sizeof(ULONG)) return FALSE; type = *(ULONG *)p; p += sizeof(ULONG); data_len -= sizeof(ULONG); switch (type) { case 0x3: case 0xc: if (data_len < sizeof(GUID)) return FALSE; p += sizeof(GUID); data_len -= sizeof(GUID); break; case 0x0: case 0x2: case 0x4: case 0x5: case 0x6: case 0xd: if (data_len < sizeof(ULONG)) return FALSE; p += sizeof(ULONG); data_len -= sizeof(ULONG); break; case 0x1: if (data_len < 24) return FALSE; p += 24; data_len -= 24; break; default: FIXME("unimplemented type 0x%x\n", type); break; } } return TRUE; } /* assumes the HTTP packet has been validated */ static unsigned char *RPCRT4_NextHttpHeaderField(unsigned char *data) { ULONG type; type = *(ULONG *)data; data += sizeof(ULONG); switch (type) { case 0x3: case 0xc: return data + sizeof(GUID); case 0x0: case 0x2: case 0x4: case 0x5: case 0x6: case 0xd: return data + sizeof(ULONG); case 0x1: return data + 24; default: FIXME("unimplemented type 0x%x\n", type); return data; } } #define READ_HTTP_PAYLOAD_FIELD_TYPE(data) *(ULONG *)(data) #define GET_HTTP_PAYLOAD_FIELD_DATA(data) ((data) + sizeof(ULONG)) /* assumes the HTTP packet has been validated */ RPC_STATUS RPCRT4_ParseHttpPrepareHeader1(RpcPktHdr *header, unsigned char *data, ULONG *field1) { ULONG type; if (header->http.flags != 0x0) { ERR("invalid flags 0x%x\n", header->http.flags); return RPC_S_PROTOCOL_ERROR; } if (header->http.num_data_items != 1) { ERR("invalid number of data items %d\n", header->http.num_data_items); return RPC_S_PROTOCOL_ERROR; } type = READ_HTTP_PAYLOAD_FIELD_TYPE(data); if (type != 0x00000002) { ERR("invalid type 0x%08x\n", type); return RPC_S_PROTOCOL_ERROR; } *field1 = *(ULONG *)GET_HTTP_PAYLOAD_FIELD_DATA(data); return RPC_S_OK; } /* assumes the HTTP packet has been validated */ RPC_STATUS RPCRT4_ParseHttpPrepareHeader2(RpcPktHdr *header, unsigned char *data, ULONG *field1, ULONG *bytes_until_next_packet, ULONG *field3) { ULONG type; if (header->http.flags != 0x0) { ERR("invalid flags 0x%x\n", header->http.flags); return RPC_S_PROTOCOL_ERROR; } if (header->http.num_data_items != 3) { ERR("invalid number of data items %d\n", header->http.num_data_items); return RPC_S_PROTOCOL_ERROR; } type = READ_HTTP_PAYLOAD_FIELD_TYPE(data); if (type != 0x00000006) { ERR("invalid type for field 1: 0x%08x\n", type); return RPC_S_PROTOCOL_ERROR; } *field1 = *(ULONG *)GET_HTTP_PAYLOAD_FIELD_DATA(data); data = RPCRT4_NextHttpHeaderField(data); type = READ_HTTP_PAYLOAD_FIELD_TYPE(data); if (type != 0x00000000) { ERR("invalid type for field 2: 0x%08x\n", type); return RPC_S_PROTOCOL_ERROR; } *bytes_until_next_packet = *(ULONG *)GET_HTTP_PAYLOAD_FIELD_DATA(data); data = RPCRT4_NextHttpHeaderField(data); type = READ_HTTP_PAYLOAD_FIELD_TYPE(data); if (type != 0x00000002) { ERR("invalid type for field 3: 0x%08x\n", type); return RPC_S_PROTOCOL_ERROR; } *field3 = *(ULONG *)GET_HTTP_PAYLOAD_FIELD_DATA(data); return RPC_S_OK; } RPC_STATUS RPCRT4_ParseHttpFlowControlHeader(RpcPktHdr *header, unsigned char *data, BOOL server, ULONG *bytes_transmitted, ULONG *flow_control_increment, UUID *pipe_uuid) { ULONG type; if (header->http.flags != 0x2) { ERR("invalid flags 0x%x\n", header->http.flags); return RPC_S_PROTOCOL_ERROR; } if (header->http.num_data_items != 2) { ERR("invalid number of data items %d\n", header->http.num_data_items); return RPC_S_PROTOCOL_ERROR; } type = READ_HTTP_PAYLOAD_FIELD_TYPE(data); if (type != 0x0000000d) { ERR("invalid type for field 1: 0x%08x\n", type); return RPC_S_PROTOCOL_ERROR; } if (*(ULONG *)GET_HTTP_PAYLOAD_FIELD_DATA(data) != (server ? 0x3 : 0x0)) { ERR("invalid type for 0xd field data: 0x%08x\n", *(ULONG *)GET_HTTP_PAYLOAD_FIELD_DATA(data)); return RPC_S_PROTOCOL_ERROR; } data = RPCRT4_NextHttpHeaderField(data); type = READ_HTTP_PAYLOAD_FIELD_TYPE(data); if (type != 0x00000001) { ERR("invalid type for field 2: 0x%08x\n", type); return RPC_S_PROTOCOL_ERROR; } *bytes_transmitted = *(ULONG *)GET_HTTP_PAYLOAD_FIELD_DATA(data); *flow_control_increment = *(ULONG *)(GET_HTTP_PAYLOAD_FIELD_DATA(data) + 4); *pipe_uuid = *(UUID *)(GET_HTTP_PAYLOAD_FIELD_DATA(data) + 8); return RPC_S_OK; } static RPC_STATUS RPCRT4_SecurePacket(RpcConnection *Connection, enum secure_packet_direction dir, RpcPktHdr *hdr, unsigned int hdr_size, unsigned char *stub_data, unsigned int stub_data_size, RpcAuthVerifier *auth_hdr, unsigned char *auth_value, unsigned int auth_value_size) { SecBufferDesc message; SecBuffer buffers[4]; SECURITY_STATUS sec_status; message.ulVersion = SECBUFFER_VERSION; message.cBuffers = sizeof(buffers)/sizeof(buffers[0]); message.pBuffers = buffers; buffers[0].cbBuffer = hdr_size; buffers[0].BufferType = SECBUFFER_DATA|SECBUFFER_READONLY_WITH_CHECKSUM; buffers[0].pvBuffer = hdr; buffers[1].cbBuffer = stub_data_size; buffers[1].BufferType = SECBUFFER_DATA; buffers[1].pvBuffer = stub_data; buffers[2].cbBuffer = sizeof(*auth_hdr); buffers[2].BufferType = SECBUFFER_DATA|SECBUFFER_READONLY_WITH_CHECKSUM; buffers[2].pvBuffer = auth_hdr; buffers[3].cbBuffer = auth_value_size; buffers[3].BufferType = SECBUFFER_TOKEN; buffers[3].pvBuffer = auth_value; if (dir == SECURE_PACKET_SEND) { if ((auth_hdr->auth_level == RPC_C_AUTHN_LEVEL_PKT_PRIVACY) && packet_has_body(hdr)) { sec_status = EncryptMessage(&Connection->ctx, 0, &message, 0 /* FIXME */); if (sec_status != SEC_E_OK) { ERR("EncryptMessage failed with 0x%08x\n", sec_status); return RPC_S_SEC_PKG_ERROR; } } else if (auth_hdr->auth_level != RPC_C_AUTHN_LEVEL_NONE) { sec_status = MakeSignature(&Connection->ctx, 0, &message, 0 /* FIXME */); if (sec_status != SEC_E_OK) { ERR("MakeSignature failed with 0x%08x\n", sec_status); return RPC_S_SEC_PKG_ERROR; } } } else if (dir == SECURE_PACKET_RECEIVE) { if ((auth_hdr->auth_level == RPC_C_AUTHN_LEVEL_PKT_PRIVACY) && packet_has_body(hdr)) { sec_status = DecryptMessage(&Connection->ctx, &message, 0 /* FIXME */, 0); if (sec_status != SEC_E_OK) { ERR("DecryptMessage failed with 0x%08x\n", sec_status); return RPC_S_SEC_PKG_ERROR; } } else if (auth_hdr->auth_level != RPC_C_AUTHN_LEVEL_NONE) { sec_status = VerifySignature(&Connection->ctx, &message, 0 /* FIXME */, NULL); if (sec_status != SEC_E_OK) { ERR("VerifySignature failed with 0x%08x\n", sec_status); return RPC_S_SEC_PKG_ERROR; } } } return RPC_S_OK; } /*********************************************************************** * RPCRT4_SendWithAuth (internal) * * Transmit a packet with authorization data over connection in acceptable fragments. */ static RPC_STATUS RPCRT4_SendWithAuth(RpcConnection *Connection, RpcPktHdr *Header, void *Buffer, unsigned int BufferLength, const void *Auth, unsigned int AuthLength) { PUCHAR buffer_pos; DWORD hdr_size; LONG count; unsigned char *pkt; LONG alen; RPC_STATUS status; RPCRT4_SetThreadCurrentConnection(Connection); buffer_pos = Buffer; /* The packet building functions save the packet header size, so we can use it. */ hdr_size = Header->common.frag_len; if (AuthLength) Header->common.auth_len = AuthLength; else if (Connection->AuthInfo && packet_has_auth_verifier(Header)) { if ((Connection->AuthInfo->AuthnLevel == RPC_C_AUTHN_LEVEL_PKT_PRIVACY) && packet_has_body(Header)) Header->common.auth_len = Connection->encryption_auth_len; else Header->common.auth_len = Connection->signature_auth_len; } else Header->common.auth_len = 0; Header->common.flags |= RPC_FLG_FIRST; Header->common.flags &= ~RPC_FLG_LAST; alen = RPC_AUTH_VERIFIER_LEN(&Header->common); while (!(Header->common.flags & RPC_FLG_LAST)) { unsigned char auth_pad_len = Header->common.auth_len ? ROUND_UP_AMOUNT(BufferLength, AUTH_ALIGNMENT) : 0; unsigned int pkt_size = BufferLength + hdr_size + alen + auth_pad_len; /* decide if we need to split the packet into fragments */ if (pkt_size <= Connection->MaxTransmissionSize) { Header->common.flags |= RPC_FLG_LAST; Header->common.frag_len = pkt_size; } else { auth_pad_len = 0; /* make sure packet payload will be a multiple of 16 */ Header->common.frag_len = ((Connection->MaxTransmissionSize - hdr_size - alen) & ~(AUTH_ALIGNMENT-1)) + hdr_size + alen; } pkt = HeapAlloc(GetProcessHeap(), HEAP_ZERO_MEMORY, Header->common.frag_len); memcpy(pkt, Header, hdr_size); /* fragment consisted of header only and is the last one */ if (hdr_size == Header->common.frag_len) goto write; memcpy(pkt + hdr_size, buffer_pos, Header->common.frag_len - hdr_size - auth_pad_len - alen); /* add the authorization info */ if (Connection->AuthInfo && packet_has_auth_verifier(Header)) { RpcAuthVerifier *auth_hdr = (RpcAuthVerifier *)&pkt[Header->common.frag_len - alen]; auth_hdr->auth_type = Connection->AuthInfo->AuthnSvc; auth_hdr->auth_level = Connection->AuthInfo->AuthnLevel; auth_hdr->auth_pad_length = auth_pad_len; auth_hdr->auth_reserved = 0; /* a unique number... */ auth_hdr->auth_context_id = Connection->auth_context_id; if (AuthLength) memcpy(auth_hdr + 1, Auth, AuthLength); else { status = RPCRT4_SecurePacket(Connection, SECURE_PACKET_SEND, (RpcPktHdr *)pkt, hdr_size, pkt + hdr_size, Header->common.frag_len - hdr_size - alen, auth_hdr, (unsigned char *)(auth_hdr + 1), Header->common.auth_len); if (status != RPC_S_OK) { HeapFree(GetProcessHeap(), 0, pkt); RPCRT4_SetThreadCurrentConnection(NULL); return status; } } } write: count = rpcrt4_conn_write(Connection, pkt, Header->common.frag_len); HeapFree(GetProcessHeap(), 0, pkt); if (count<0) { WARN("rpcrt4_conn_write failed (auth)\n"); RPCRT4_SetThreadCurrentConnection(NULL); return RPC_S_CALL_FAILED; } buffer_pos += Header->common.frag_len - hdr_size - alen - auth_pad_len; BufferLength -= Header->common.frag_len - hdr_size - alen - auth_pad_len; Header->common.flags &= ~RPC_FLG_FIRST; } RPCRT4_SetThreadCurrentConnection(NULL); return RPC_S_OK; } /*********************************************************************** * RPCRT4_ClientAuthorize (internal) * * Authorize a client connection. A NULL in param signifies a new connection. */ static RPC_STATUS RPCRT4_ClientAuthorize(RpcConnection *conn, SecBuffer *in, SecBuffer *out) { SECURITY_STATUS r; SecBufferDesc out_desc; SecBufferDesc inp_desc; SecPkgContext_Sizes secctx_sizes; BOOL continue_needed; ULONG context_req = ISC_REQ_CONNECTION | ISC_REQ_USE_DCE_STYLE | ISC_REQ_MUTUAL_AUTH | ISC_REQ_DELEGATE; if (conn->AuthInfo->AuthnLevel == RPC_C_AUTHN_LEVEL_PKT_INTEGRITY) context_req |= ISC_REQ_INTEGRITY; else if (conn->AuthInfo->AuthnLevel == RPC_C_AUTHN_LEVEL_PKT_PRIVACY) context_req |= ISC_REQ_CONFIDENTIALITY | ISC_REQ_INTEGRITY; out->BufferType = SECBUFFER_TOKEN; out->cbBuffer = conn->AuthInfo->cbMaxToken; out->pvBuffer = HeapAlloc(GetProcessHeap(), 0, out->cbBuffer); if (!out->pvBuffer) return ERROR_OUTOFMEMORY; out_desc.ulVersion = 0; out_desc.cBuffers = 1; out_desc.pBuffers = out; inp_desc.cBuffers = 1; inp_desc.pBuffers = in; inp_desc.ulVersion = 0; r = InitializeSecurityContextW(&conn->AuthInfo->cred, in ? &conn->ctx : NULL, in ? NULL : conn->AuthInfo->server_principal_name, context_req, 0, SECURITY_NETWORK_DREP, in ? &inp_desc : NULL, 0, &conn->ctx, &out_desc, &conn->attr, &conn->exp); if (FAILED(r)) { WARN("InitializeSecurityContext failed with error 0x%08x\n", r); goto failed; } TRACE("r = 0x%08x, attr = 0x%08x\n", r, conn->attr); continue_needed = ((r == SEC_I_CONTINUE_NEEDED) || (r == SEC_I_COMPLETE_AND_CONTINUE)); if ((r == SEC_I_COMPLETE_NEEDED) || (r == SEC_I_COMPLETE_AND_CONTINUE)) { TRACE("complete needed\n"); r = CompleteAuthToken(&conn->ctx, &out_desc); if (FAILED(r)) { WARN("CompleteAuthToken failed with error 0x%08x\n", r); goto failed; } } TRACE("cbBuffer = %d\n", out->cbBuffer); if (!continue_needed) { r = QueryContextAttributesA(&conn->ctx, SECPKG_ATTR_SIZES, &secctx_sizes); if (FAILED(r)) { WARN("QueryContextAttributes failed with error 0x%08x\n", r); goto failed; } conn->signature_auth_len = secctx_sizes.cbMaxSignature; conn->encryption_auth_len = secctx_sizes.cbSecurityTrailer; } return RPC_S_OK; failed: HeapFree(GetProcessHeap(), 0, out->pvBuffer); out->pvBuffer = NULL; return ERROR_ACCESS_DENIED; /* FIXME: is this correct? */ } /*********************************************************************** * RPCRT4_AuthorizeBinding (internal) */ RPC_STATUS RPCRT4_AuthorizeConnection(RpcConnection* conn, BYTE *challenge, ULONG count) { SecBuffer inp, out; RpcPktHdr *resp_hdr; RPC_STATUS status; TRACE("challenge %s, %d bytes\n", challenge, count); inp.BufferType = SECBUFFER_TOKEN; inp.pvBuffer = challenge; inp.cbBuffer = count; status = RPCRT4_ClientAuthorize(conn, &inp, &out); if (status) return status; resp_hdr = RPCRT4_BuildAuthHeader(NDR_LOCAL_DATA_REPRESENTATION); if (!resp_hdr) return E_OUTOFMEMORY; status = RPCRT4_SendWithAuth(conn, resp_hdr, NULL, 0, out.pvBuffer, out.cbBuffer); HeapFree(GetProcessHeap(), 0, out.pvBuffer); RPCRT4_FreeHeader(resp_hdr); return status; } /*********************************************************************** * RPCRT4_Send (internal) * * Transmit a packet over connection in acceptable fragments. */ RPC_STATUS RPCRT4_Send(RpcConnection *Connection, RpcPktHdr *Header, void *Buffer, unsigned int BufferLength) { RPC_STATUS r; SecBuffer out; if (!Connection->AuthInfo || SecIsValidHandle(&Connection->ctx)) { return RPCRT4_SendWithAuth(Connection, Header, Buffer, BufferLength, NULL, 0); } /* tack on a negotiate packet */ r = RPCRT4_ClientAuthorize(Connection, NULL, &out); if (r == RPC_S_OK) { r = RPCRT4_SendWithAuth(Connection, Header, Buffer, BufferLength, out.pvBuffer, out.cbBuffer); HeapFree(GetProcessHeap(), 0, out.pvBuffer); } return r; } /* validates version and frag_len fields */ RPC_STATUS RPCRT4_ValidateCommonHeader(const RpcPktCommonHdr *hdr) { DWORD hdr_length; /* verify if the header really makes sense */ if (hdr->rpc_ver != RPC_VER_MAJOR || hdr->rpc_ver_minor != RPC_VER_MINOR) { WARN("unhandled packet version\n"); return RPC_S_PROTOCOL_ERROR; } hdr_length = RPCRT4_GetHeaderSize((const RpcPktHdr*)hdr); if (hdr_length == 0) { WARN("header length == 0\n"); return RPC_S_PROTOCOL_ERROR; } if (hdr->frag_len < hdr_length) { WARN("bad frag length %d\n", hdr->frag_len); return RPC_S_PROTOCOL_ERROR; } return RPC_S_OK; } /*********************************************************************** * RPCRT4_default_receive_fragment (internal) * * Receive a fragment from a connection. */ static RPC_STATUS RPCRT4_default_receive_fragment(RpcConnection *Connection, RpcPktHdr **Header, void **Payload) { RPC_STATUS status; DWORD hdr_length; LONG dwRead; RpcPktCommonHdr common_hdr; *Header = NULL; *Payload = NULL; TRACE("(%p, %p, %p)\n", Connection, Header, Payload); /* read packet common header */ dwRead = rpcrt4_conn_read(Connection, &common_hdr, sizeof(common_hdr)); if (dwRead != sizeof(common_hdr)) { WARN("Short read of header, %d bytes\n", dwRead); status = RPC_S_CALL_FAILED; goto fail; } status = RPCRT4_ValidateCommonHeader(&common_hdr); if (status != RPC_S_OK) goto fail; hdr_length = RPCRT4_GetHeaderSize((RpcPktHdr*)&common_hdr); if (hdr_length == 0) { WARN("header length == 0\n"); status = RPC_S_PROTOCOL_ERROR; goto fail; } *Header = HeapAlloc(GetProcessHeap(), 0, hdr_length); memcpy(*Header, &common_hdr, sizeof(common_hdr)); /* read the rest of packet header */ dwRead = rpcrt4_conn_read(Connection, &(*Header)->common + 1, hdr_length - sizeof(common_hdr)); if (dwRead != hdr_length - sizeof(common_hdr)) { WARN("bad header length, %d bytes, hdr_length %d\n", dwRead, hdr_length); status = RPC_S_CALL_FAILED; goto fail; } if (common_hdr.frag_len - hdr_length) { *Payload = HeapAlloc(GetProcessHeap(), 0, common_hdr.frag_len - hdr_length); if (!*Payload) { status = RPC_S_OUT_OF_RESOURCES; goto fail; } dwRead = rpcrt4_conn_read(Connection, *Payload, common_hdr.frag_len - hdr_length); if (dwRead != common_hdr.frag_len - hdr_length) { WARN("bad data length, %d/%d\n", dwRead, common_hdr.frag_len - hdr_length); status = RPC_S_CALL_FAILED; goto fail; } } else *Payload = NULL; /* success */ status = RPC_S_OK; fail: if (status != RPC_S_OK) { RPCRT4_FreeHeader(*Header); *Header = NULL; HeapFree(GetProcessHeap(), 0, *Payload); *Payload = NULL; } return status; } static RPC_STATUS RPCRT4_receive_fragment(RpcConnection *Connection, RpcPktHdr **Header, void **Payload) { if (Connection->ops->receive_fragment) return Connection->ops->receive_fragment(Connection, Header, Payload); else return RPCRT4_default_receive_fragment(Connection, Header, Payload); } /*********************************************************************** * RPCRT4_ReceiveWithAuth (internal) * * Receive a packet from connection, merge the fragments and return the auth * data. */ RPC_STATUS RPCRT4_ReceiveWithAuth(RpcConnection *Connection, RpcPktHdr **Header, PRPC_MESSAGE pMsg, unsigned char **auth_data_out, ULONG *auth_length_out) { RPC_STATUS status; DWORD hdr_length; unsigned short first_flag; ULONG data_length; ULONG buffer_length; ULONG auth_length = 0; unsigned char *auth_data = NULL; RpcPktHdr *CurrentHeader = NULL; void *payload = NULL; *Header = NULL; pMsg->Buffer = NULL; TRACE("(%p, %p, %p, %p)\n", Connection, Header, pMsg, auth_data_out); RPCRT4_SetThreadCurrentConnection(Connection); status = RPCRT4_receive_fragment(Connection, Header, &payload); if (status != RPC_S_OK) goto fail; hdr_length = RPCRT4_GetHeaderSize(*Header); /* read packet body */ switch ((*Header)->common.ptype) { case PKT_RESPONSE: pMsg->BufferLength = (*Header)->response.alloc_hint; break; case PKT_REQUEST: pMsg->BufferLength = (*Header)->request.alloc_hint; break; default: pMsg->BufferLength = (*Header)->common.frag_len - hdr_length - RPC_AUTH_VERIFIER_LEN(&(*Header)->common); } TRACE("buffer length = %u\n", pMsg->BufferLength); pMsg->Buffer = I_RpcAllocate(pMsg->BufferLength); if (!pMsg->Buffer) { status = ERROR_OUTOFMEMORY; goto fail; } first_flag = RPC_FLG_FIRST; auth_length = (*Header)->common.auth_len; if (auth_length) { auth_data = HeapAlloc(GetProcessHeap(), 0, RPC_AUTH_VERIFIER_LEN(&(*Header)->common)); if (!auth_data) { status = RPC_S_OUT_OF_RESOURCES; goto fail; } } CurrentHeader = *Header; buffer_length = 0; while (TRUE) { unsigned int header_auth_len = RPC_AUTH_VERIFIER_LEN(&CurrentHeader->common); /* verify header fields */ if ((CurrentHeader->common.frag_len < hdr_length) || (CurrentHeader->common.frag_len - hdr_length < header_auth_len)) { WARN("frag_len %d too small for hdr_length %d and auth_len %d\n", CurrentHeader->common.frag_len, hdr_length, CurrentHeader->common.auth_len); status = RPC_S_PROTOCOL_ERROR; goto fail; } if (CurrentHeader->common.auth_len != auth_length) { WARN("auth_len header field changed from %d to %d\n", auth_length, CurrentHeader->common.auth_len); status = RPC_S_PROTOCOL_ERROR; goto fail; } if ((CurrentHeader->common.flags & RPC_FLG_FIRST) != first_flag) { TRACE("invalid packet flags\n"); status = RPC_S_PROTOCOL_ERROR; goto fail; } data_length = CurrentHeader->common.frag_len - hdr_length - header_auth_len; if (data_length + buffer_length > pMsg->BufferLength) { TRACE("allocation hint exceeded, new buffer length = %d\n", data_length + buffer_length); pMsg->BufferLength = data_length + buffer_length; status = I_RpcReAllocateBuffer(pMsg); if (status != RPC_S_OK) goto fail; } memcpy((unsigned char *)pMsg->Buffer + buffer_length, payload, data_length); if (header_auth_len) { if (header_auth_len < sizeof(RpcAuthVerifier) || header_auth_len > RPC_AUTH_VERIFIER_LEN(&(*Header)->common)) { WARN("bad auth verifier length %d\n", header_auth_len); status = RPC_S_PROTOCOL_ERROR; goto fail; } /* FIXME: we should accumulate authentication data for the bind, * bind_ack, alter_context and alter_context_response if necessary. * however, the details of how this is done is very sketchy in the * DCE/RPC spec. for all other packet types that have authentication * verifier data then it is just duplicated in all the fragments */ memcpy(auth_data, (unsigned char *)payload + data_length, header_auth_len); /* these packets are handled specially, not by the generic SecurePacket * function */ if (!auth_data_out && SecIsValidHandle(&Connection->ctx)) { status = RPCRT4_SecurePacket(Connection, SECURE_PACKET_RECEIVE, CurrentHeader, hdr_length, (unsigned char *)pMsg->Buffer + buffer_length, data_length, (RpcAuthVerifier *)auth_data, auth_data + sizeof(RpcAuthVerifier), header_auth_len - sizeof(RpcAuthVerifier)); if (status != RPC_S_OK) goto fail; } } buffer_length += data_length; if (!(CurrentHeader->common.flags & RPC_FLG_LAST)) { TRACE("next header\n"); if (*Header != CurrentHeader) { RPCRT4_FreeHeader(CurrentHeader); CurrentHeader = NULL; } HeapFree(GetProcessHeap(), 0, payload); payload = NULL; status = RPCRT4_receive_fragment(Connection, &CurrentHeader, &payload); if (status != RPC_S_OK) goto fail; first_flag = 0; } else { break; } } pMsg->BufferLength = buffer_length; /* success */ status = RPC_S_OK; fail: RPCRT4_SetThreadCurrentConnection(NULL); if (CurrentHeader != *Header) RPCRT4_FreeHeader(CurrentHeader); if (status != RPC_S_OK) { I_RpcFree(pMsg->Buffer); pMsg->Buffer = NULL; RPCRT4_FreeHeader(*Header); *Header = NULL; } if (auth_data_out && status == RPC_S_OK) { *auth_length_out = auth_length; *auth_data_out = auth_data; } else HeapFree(GetProcessHeap(), 0, auth_data); HeapFree(GetProcessHeap(), 0, payload); return status; } /*********************************************************************** * RPCRT4_Receive (internal) * * Receive a packet from connection and merge the fragments. */ RPC_STATUS RPCRT4_Receive(RpcConnection *Connection, RpcPktHdr **Header, PRPC_MESSAGE pMsg) { return RPCRT4_ReceiveWithAuth(Connection, Header, pMsg, NULL, NULL); } /*********************************************************************** * I_RpcNegotiateTransferSyntax [RPCRT4.@] * * Negotiates the transfer syntax used by a client connection by connecting * to the server. * * PARAMS * pMsg [I] RPC Message structure. * pAsync [I] Asynchronous state to set. * * RETURNS * Success: RPC_S_OK. * Failure: Any error code. */ RPC_STATUS WINAPI I_RpcNegotiateTransferSyntax(PRPC_MESSAGE pMsg) { RpcBinding* bind = pMsg->Handle; RpcConnection* conn; RPC_STATUS status = RPC_S_OK; TRACE("(%p)\n", pMsg); if (!bind || bind->server) { ERR("no binding\n"); return RPC_S_INVALID_BINDING; } /* if we already have a connection, we don't need to negotiate again */ if (!pMsg->ReservedForRuntime) { RPC_CLIENT_INTERFACE *cif = pMsg->RpcInterfaceInformation; if (!cif) return RPC_S_INTERFACE_NOT_FOUND; if (!bind->Endpoint || !bind->Endpoint[0]) { TRACE("automatically resolving partially bound binding\n"); status = RpcEpResolveBinding(bind, cif); if (status != RPC_S_OK) return status; } status = RPCRT4_OpenBinding(bind, &conn, &cif->TransferSyntax, &cif->InterfaceId); if (status == RPC_S_OK) { pMsg->ReservedForRuntime = conn; RPCRT4_AddRefBinding(bind); } } return status; } /*********************************************************************** * I_RpcGetBuffer [RPCRT4.@] * * Allocates a buffer for use by I_RpcSend or I_RpcSendReceive and binds to the * server interface. * * PARAMS * pMsg [I/O] RPC message information. * * RETURNS * Success: RPC_S_OK. * Failure: RPC_S_INVALID_BINDING if pMsg->Handle is invalid. * RPC_S_SERVER_UNAVAILABLE if unable to connect to server. * ERROR_OUTOFMEMORY if buffer allocation failed. * * NOTES * The pMsg->BufferLength field determines the size of the buffer to allocate, * in bytes. * * Use I_RpcFreeBuffer() to unbind from the server and free the message buffer. * * SEE ALSO * I_RpcFreeBuffer(), I_RpcSend(), I_RpcReceive(), I_RpcSendReceive(). */ RPC_STATUS WINAPI I_RpcGetBuffer(PRPC_MESSAGE pMsg) { RPC_STATUS status; RpcBinding* bind = pMsg->Handle; TRACE("(%p): BufferLength=%d\n", pMsg, pMsg->BufferLength); if (!bind) { ERR("no binding\n"); return RPC_S_INVALID_BINDING; } pMsg->Buffer = I_RpcAllocate(pMsg->BufferLength); TRACE("Buffer=%p\n", pMsg->Buffer); if (!pMsg->Buffer) return ERROR_OUTOFMEMORY; if (!bind->server) { status = I_RpcNegotiateTransferSyntax(pMsg); if (status != RPC_S_OK) I_RpcFree(pMsg->Buffer); } else status = RPC_S_OK; return status; } /*********************************************************************** * I_RpcReAllocateBuffer (internal) */ static RPC_STATUS I_RpcReAllocateBuffer(PRPC_MESSAGE pMsg) { TRACE("(%p): BufferLength=%d\n", pMsg, pMsg->BufferLength); pMsg->Buffer = HeapReAlloc(GetProcessHeap(), 0, pMsg->Buffer, pMsg->BufferLength); TRACE("Buffer=%p\n", pMsg->Buffer); return pMsg->Buffer ? RPC_S_OK : ERROR_OUTOFMEMORY; } /*********************************************************************** * I_RpcFreeBuffer [RPCRT4.@] * * Frees a buffer allocated by I_RpcGetBuffer or I_RpcReceive and unbinds from * the server interface. * * PARAMS * pMsg [I/O] RPC message information. * * RETURNS * RPC_S_OK. * * SEE ALSO * I_RpcGetBuffer(), I_RpcReceive(). */ RPC_STATUS WINAPI I_RpcFreeBuffer(PRPC_MESSAGE pMsg) { RpcBinding* bind = pMsg->Handle; TRACE("(%p) Buffer=%p\n", pMsg, pMsg->Buffer); if (!bind) { ERR("no binding\n"); return RPC_S_INVALID_BINDING; } if (pMsg->ReservedForRuntime) { RpcConnection *conn = pMsg->ReservedForRuntime; RPCRT4_CloseBinding(bind, conn); RPCRT4_ReleaseBinding(bind); pMsg->ReservedForRuntime = NULL; } I_RpcFree(pMsg->Buffer); return RPC_S_OK; } static void CALLBACK async_apc_notifier_proc(ULONG_PTR ulParam) { RPC_ASYNC_STATE *state = (RPC_ASYNC_STATE *)ulParam; state->u.APC.NotificationRoutine(state, NULL, state->Event); } static DWORD WINAPI async_notifier_proc(LPVOID p) { RpcConnection *conn = p; RPC_ASYNC_STATE *state = conn->async_state; if (state && conn->ops->wait_for_incoming_data(conn) != -1) { state->Event = RpcCallComplete; switch (state->NotificationType) { case RpcNotificationTypeEvent: TRACE("RpcNotificationTypeEvent %p\n", state->u.hEvent); SetEvent(state->u.hEvent); break; case RpcNotificationTypeApc: TRACE("RpcNotificationTypeApc %p\n", state->u.APC.hThread); QueueUserAPC(async_apc_notifier_proc, state->u.APC.hThread, (ULONG_PTR)state); break; case RpcNotificationTypeIoc: TRACE("RpcNotificationTypeIoc %p, 0x%x, 0x%lx, %p\n", state->u.IOC.hIOPort, state->u.IOC.dwNumberOfBytesTransferred, state->u.IOC.dwCompletionKey, state->u.IOC.lpOverlapped); PostQueuedCompletionStatus(state->u.IOC.hIOPort, state->u.IOC.dwNumberOfBytesTransferred, state->u.IOC.dwCompletionKey, state->u.IOC.lpOverlapped); break; case RpcNotificationTypeHwnd: TRACE("RpcNotificationTypeHwnd %p 0x%x\n", state->u.HWND.hWnd, state->u.HWND.Msg); PostMessageW(state->u.HWND.hWnd, state->u.HWND.Msg, 0, 0); break; case RpcNotificationTypeCallback: TRACE("RpcNotificationTypeCallback %p\n", state->u.NotificationRoutine); state->u.NotificationRoutine(state, NULL, state->Event); break; case RpcNotificationTypeNone: TRACE("RpcNotificationTypeNone\n"); break; default: FIXME("unknown NotificationType: %d/0x%x\n", state->NotificationType, state->NotificationType); break; } } return 0; } /*********************************************************************** * I_RpcSend [RPCRT4.@] * * Sends a message to the server. * * PARAMS * pMsg [I/O] RPC message information. * * RETURNS * Unknown. * * NOTES * The buffer must have been allocated with I_RpcGetBuffer(). * * SEE ALSO * I_RpcGetBuffer(), I_RpcReceive(), I_RpcSendReceive(). */ RPC_STATUS WINAPI I_RpcSend(PRPC_MESSAGE pMsg) { RpcBinding* bind = pMsg->Handle; RpcConnection* conn; RPC_STATUS status; RpcPktHdr *hdr; TRACE("(%p)\n", pMsg); if (!bind || bind->server || !pMsg->ReservedForRuntime) return RPC_S_INVALID_BINDING; conn = pMsg->ReservedForRuntime; hdr = RPCRT4_BuildRequestHeader(pMsg->DataRepresentation, pMsg->BufferLength, pMsg->ProcNum & ~RPC_FLAGS_VALID_BIT, &bind->ObjectUuid); if (!hdr) return ERROR_OUTOFMEMORY; hdr->common.call_id = conn->NextCallId++; status = RPCRT4_Send(conn, hdr, pMsg->Buffer, pMsg->BufferLength); RPCRT4_FreeHeader(hdr); if (status == RPC_S_OK && pMsg->RpcFlags & RPC_BUFFER_ASYNC) { if (!QueueUserWorkItem(async_notifier_proc, conn, WT_EXECUTEDEFAULT | WT_EXECUTELONGFUNCTION)) status = RPC_S_OUT_OF_RESOURCES; } return status; } /* is this status something that the server can't recover from? */ static inline BOOL is_hard_error(RPC_STATUS status) { switch (status) { case 0: /* user-defined fault */ case ERROR_ACCESS_DENIED: case ERROR_INVALID_PARAMETER: case RPC_S_PROTOCOL_ERROR: case RPC_S_CALL_FAILED: case RPC_S_CALL_FAILED_DNE: case RPC_S_SEC_PKG_ERROR: return TRUE; default: return FALSE; } } /*********************************************************************** * I_RpcReceive [RPCRT4.@] */ RPC_STATUS WINAPI I_RpcReceive(PRPC_MESSAGE pMsg) { RpcBinding* bind = pMsg->Handle; RPC_STATUS status; RpcPktHdr *hdr = NULL; RpcConnection *conn; TRACE("(%p)\n", pMsg); if (!bind || bind->server || !pMsg->ReservedForRuntime) return RPC_S_INVALID_BINDING; conn = pMsg->ReservedForRuntime; status = RPCRT4_Receive(conn, &hdr, pMsg); if (status != RPC_S_OK) { WARN("receive failed with error %x\n", status); goto fail; } switch (hdr->common.ptype) { case PKT_RESPONSE: break; case PKT_FAULT: ERR ("we got fault packet with status 0x%x\n", hdr->fault.status); status = NCA2RPC_STATUS(hdr->fault.status); if (is_hard_error(status)) goto fail; break; default: WARN("bad packet type %d\n", hdr->common.ptype); status = RPC_S_PROTOCOL_ERROR; goto fail; } /* success */ RPCRT4_FreeHeader(hdr); return status; fail: RPCRT4_FreeHeader(hdr); RPCRT4_DestroyConnection(conn); pMsg->ReservedForRuntime = NULL; return status; } /*********************************************************************** * I_RpcSendReceive [RPCRT4.@] * * Sends a message to the server and receives the response. * * PARAMS * pMsg [I/O] RPC message information. * * RETURNS * Success: RPC_S_OK. * Failure: Any error code. * * NOTES * The buffer must have been allocated with I_RpcGetBuffer(). * * SEE ALSO * I_RpcGetBuffer(), I_RpcSend(), I_RpcReceive(). */ RPC_STATUS WINAPI I_RpcSendReceive(PRPC_MESSAGE pMsg) { RPC_STATUS status; void *original_buffer; TRACE("(%p)\n", pMsg); original_buffer = pMsg->Buffer; status = I_RpcSend(pMsg); if (status == RPC_S_OK) status = I_RpcReceive(pMsg); /* free the buffer replaced by a new buffer in I_RpcReceive */ if (status == RPC_S_OK) I_RpcFree(original_buffer); return status; } /*********************************************************************** * I_RpcAsyncSetHandle [RPCRT4.@] * * Sets the asynchronous state of the handle contained in the RPC message * structure. * * PARAMS * pMsg [I] RPC Message structure. * pAsync [I] Asynchronous state to set. * * RETURNS * Success: RPC_S_OK. * Failure: Any error code. */ RPC_STATUS WINAPI I_RpcAsyncSetHandle(PRPC_MESSAGE pMsg, PRPC_ASYNC_STATE pAsync) { RpcBinding* bind = pMsg->Handle; RpcConnection *conn; TRACE("(%p, %p)\n", pMsg, pAsync); if (!bind || bind->server || !pMsg->ReservedForRuntime) return RPC_S_INVALID_BINDING; conn = pMsg->ReservedForRuntime; conn->async_state = pAsync; return RPC_S_OK; } /*********************************************************************** * I_RpcAsyncAbortCall [RPCRT4.@] * * Aborts an asynchronous call. * * PARAMS * pAsync [I] Asynchronous state. * ExceptionCode [I] Exception code. * * RETURNS * Success: RPC_S_OK. * Failure: Any error code. */ RPC_STATUS WINAPI I_RpcAsyncAbortCall(PRPC_ASYNC_STATE pAsync, ULONG ExceptionCode) { FIXME("(%p, %d): stub\n", pAsync, ExceptionCode); return RPC_S_INVALID_ASYNC_HANDLE; }