/* * Math functions * * Copyright 2021 Alexandre Julliard * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA * * * For functions copied from musl libc (http://musl.libc.org/): * ==================================================== * Copyright 2005-2020 Rich Felker, et al. * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sublicense, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * ==================================================== */ #include <math.h> #include <float.h> #include "ntstatus.h" #define WIN32_NO_STATUS #include "ntdll_misc.h" /* Copied from musl: src/internal/libm.h */ static inline float fp_barrierf(float x) { volatile float y = x; return y; } static inline double fp_barrier(double x) { volatile double y = x; return y; } /* Copied from musl: src/math/rint.c */ static double __rint(double x) { static const double toint = 1 / DBL_EPSILON; ULONGLONG llx = *(ULONGLONG*)&x; int e = llx >> 52 & 0x7ff; int s = llx >> 63; double y; if (e >= 0x3ff+52) return x; if (s) y = fp_barrier(x - toint) + toint; else y = fp_barrier(x + toint) - toint; if (y == 0) return s ? -0.0 : 0; return y; } /* Copied from musl: src/math/scalbn.c */ static double __scalbn(double x, int n) { union {double f; UINT64 i;} u; double y = x; if (n > 1023) { y *= 0x1p1023; n -= 1023; if (n > 1023) { y *= 0x1p1023; n -= 1023; if (n > 1023) n = 1023; } } else if (n < -1022) { /* make sure final n < -53 to avoid double rounding in the subnormal range */ y *= 0x1p-1022 * 0x1p53; n += 1022 - 53; if (n < -1022) { y *= 0x1p-1022 * 0x1p53; n += 1022 - 53; if (n < -1022) n = -1022; } } u.i = (UINT64)(0x3ff + n) << 52; x = y * u.f; return x; } /* Copied from musl: src/math/__rem_pio2_large.c */ static int __rem_pio2_large(double *x, double *y, int e0, int nx, int prec) { static const int init_jk[] = {3, 4}; static const INT32 ipio2[] = { 0xA2F983, 0x6E4E44, 0x1529FC, 0x2757D1, 0xF534DD, 0xC0DB62, 0x95993C, 0x439041, 0xFE5163, 0xABDEBB, 0xC561B7, 0x246E3A, 0x424DD2, 0xE00649, 0x2EEA09, 0xD1921C, 0xFE1DEB, 0x1CB129, 0xA73EE8, 0x8235F5, 0x2EBB44, 0x84E99C, 0x7026B4, 0x5F7E41, 0x3991D6, 0x398353, 0x39F49C, 0x845F8B, 0xBDF928, 0x3B1FF8, 0x97FFDE, 0x05980F, 0xEF2F11, 0x8B5A0A, 0x6D1F6D, 0x367ECF, 0x27CB09, 0xB74F46, 0x3F669E, 0x5FEA2D, 0x7527BA, 0xC7EBE5, 0xF17B3D, 0x0739F7, 0x8A5292, 0xEA6BFB, 0x5FB11F, 0x8D5D08, 0x560330, 0x46FC7B, 0x6BABF0, 0xCFBC20, 0x9AF436, 0x1DA9E3, 0x91615E, 0xE61B08, 0x659985, 0x5F14A0, 0x68408D, 0xFFD880, 0x4D7327, 0x310606, 0x1556CA, 0x73A8C9, 0x60E27B, 0xC08C6B, }; static const double PIo2[] = { 1.57079625129699707031e+00, 7.54978941586159635335e-08, 5.39030252995776476554e-15, 3.28200341580791294123e-22, 1.27065575308067607349e-29, 1.22933308981111328932e-36, 2.73370053816464559624e-44, 2.16741683877804819444e-51, }; INT32 jz, jx, jv, jp, jk, carry, n, iq[20], i, j, k, m, q0, ih; double z, fw, f[20], fq[20] = {0}, q[20]; /* initialize jk*/ jk = init_jk[prec]; jp = jk; /* determine jx,jv,q0, note that 3>q0 */ jx = nx - 1; jv = (e0 - 3) / 24; if(jv < 0) jv = 0; q0 = e0 - 24 * (jv + 1); /* set up f[0] to f[jx+jk] where f[jx+jk] = ipio2[jv+jk] */ j = jv - jx; m = jx + jk; for (i = 0; i <= m; i++, j++) f[i] = j < 0 ? 0.0 : (double)ipio2[j]; /* compute q[0],q[1],...q[jk] */ for (i = 0; i <= jk; i++) { for (j = 0, fw = 0.0; j <= jx; j++) fw += x[j] * f[jx + i - j]; q[i] = fw; } jz = jk; recompute: /* distill q[] into iq[] reversingly */ for (i = 0, j = jz, z = q[jz]; j > 0; i++, j--) { fw = (double)(INT32)(0x1p-24 * z); iq[i] = (INT32)(z - 0x1p24 * fw); z = q[j - 1] + fw; } /* compute n */ z = __scalbn(z, q0); /* actual value of z */ z -= 8.0 * floor(z * 0.125); /* trim off integer >= 8 */ n = (INT32)z; z -= (double)n; ih = 0; if (q0 > 0) { /* need iq[jz-1] to determine n */ i = iq[jz - 1] >> (24 - q0); n += i; iq[jz - 1] -= i << (24 - q0); ih = iq[jz - 1] >> (23 - q0); } else if (q0 == 0) ih = iq[jz - 1] >> 23; else if (z >= 0.5) ih = 2; if (ih > 0) { /* q > 0.5 */ n += 1; carry = 0; for (i = 0; i < jz; i++) { /* compute 1-q */ j = iq[i]; if (carry == 0) { if (j != 0) { carry = 1; iq[i] = 0x1000000 - j; } } else iq[i] = 0xffffff - j; } if (q0 > 0) { /* rare case: chance is 1 in 12 */ switch(q0) { case 1: iq[jz - 1] &= 0x7fffff; break; case 2: iq[jz - 1] &= 0x3fffff; break; } } if (ih == 2) { z = 1.0 - z; if (carry != 0) z -= __scalbn(1.0, q0); } } /* check if recomputation is needed */ if (z == 0.0) { j = 0; for (i = jz - 1; i >= jk; i--) j |= iq[i]; if (j == 0) { /* need recomputation */ for (k = 1; iq[jk - k] == 0; k++); /* k = no. of terms needed */ for (i = jz + 1; i <= jz + k; i++) { /* add q[jz+1] to q[jz+k] */ f[jx + i] = (double)ipio2[jv + i]; for (j = 0, fw = 0.0; j <= jx; j++) fw += x[j] * f[jx + i - j]; q[i] = fw; } jz += k; goto recompute; } } /* chop off zero terms */ if (z == 0.0) { jz -= 1; q0 -= 24; while (iq[jz] == 0) { jz--; q0 -= 24; } } else { /* break z into 24-bit if necessary */ z = __scalbn(z, -q0); if (z >= 0x1p24) { fw = (double)(INT32)(0x1p-24 * z); iq[jz] = (INT32)(z - 0x1p24 * fw); jz += 1; q0 += 24; iq[jz] = (INT32)fw; } else iq[jz] = (INT32)z; } /* convert integer "bit" chunk to floating-point value */ fw = __scalbn(1.0, q0); for (i = jz; i >= 0; i--) { q[i] = fw * (double)iq[i]; fw *= 0x1p-24; } /* compute PIo2[0,...,jp]*q[jz,...,0] */ for(i = jz; i >= 0; i--) { for (fw = 0.0, k = 0; k <= jp && k <= jz - i; k++) fw += PIo2[k] * q[i + k]; fq[jz - i] = fw; } /* compress fq[] into y[] */ switch(prec) { case 0: fw = 0.0; for (i = jz; i >= 0; i--) fw += fq[i]; y[0] = ih == 0 ? fw : -fw; break; case 1: case 2: fw = 0.0; for (i = jz; i >= 0; i--) fw += fq[i]; fw = (double)fw; y[0] = ih==0 ? fw : -fw; fw = fq[0] - fw; for (i = 1; i <= jz; i++) fw += fq[i]; y[1] = ih == 0 ? fw : -fw; break; case 3: /* painful */ for (i = jz; i > 0; i--) { fw = fq[i - 1] + fq[i]; fq[i] += fq[i - 1] - fw; fq[i - 1] = fw; } for (i = jz; i > 1; i--) { fw = fq[i - 1] + fq[i]; fq[i] += fq[i - 1] - fw; fq[i - 1] = fw; } for (fw = 0.0, i = jz; i >= 2; i--) fw += fq[i]; if (ih == 0) { y[0] = fq[0]; y[1] = fq[1]; y[2] = fw; } else { y[0] = -fq[0]; y[1] = -fq[1]; y[2] = -fw; } } return n & 7; } /* Based on musl implementation: src/math/round.c */ static double __round(double x) { ULONGLONG llx = *(ULONGLONG*)&x, tmp; int e = (llx >> 52 & 0x7ff) - 0x3ff; if (e >= 52) return x; if (e < -1) return 0 * x; else if (e == -1) return signbit(x) ? -1 : 1; tmp = 0x000fffffffffffffULL >> e; if (!(llx & tmp)) return x; llx += 0x0008000000000000ULL >> e; llx &= ~tmp; return *(double*)&llx; } /* Copied from musl: src/math/__rem_pio2.c */ static int __rem_pio2(double x, double *y) { static const double pio4 = 0x1.921fb54442d18p-1, invpio2 = 6.36619772367581382433e-01, pio2_1 = 1.57079632673412561417e+00, pio2_1t = 6.07710050650619224932e-11, pio2_2 = 6.07710050630396597660e-11, pio2_2t = 2.02226624879595063154e-21, pio2_3 = 2.02226624871116645580e-21, pio2_3t = 8.47842766036889956997e-32; union {double f; UINT64 i;} u = {x}; double z, w, t, r, fn, tx[3], ty[2]; UINT32 ix; int sign, n, ex, ey, i; sign = u.i >> 63; ix = u.i >> 32 & 0x7fffffff; if (ix <= 0x400f6a7a) { /* |x| ~<= 5pi/4 */ if ((ix & 0xfffff) == 0x921fb) /* |x| ~= pi/2 or 2pi/2 */ goto medium; /* cancellation -- use medium case */ if (ix <= 0x4002d97c) { /* |x| ~<= 3pi/4 */ if (!sign) { z = x - pio2_1; /* one round good to 85 bits */ y[0] = z - pio2_1t; y[1] = (z - y[0]) - pio2_1t; return 1; } else { z = x + pio2_1; y[0] = z + pio2_1t; y[1] = (z - y[0]) + pio2_1t; return -1; } } else { if (!sign) { z = x - 2 * pio2_1; y[0] = z - 2 * pio2_1t; y[1] = (z - y[0]) - 2 * pio2_1t; return 2; } else { z = x + 2 * pio2_1; y[0] = z + 2 * pio2_1t; y[1] = (z - y[0]) + 2 * pio2_1t; return -2; } } } if (ix <= 0x401c463b) { /* |x| ~<= 9pi/4 */ if (ix <= 0x4015fdbc) { /* |x| ~<= 7pi/4 */ if (ix == 0x4012d97c) /* |x| ~= 3pi/2 */ goto medium; if (!sign) { z = x - 3 * pio2_1; y[0] = z - 3 * pio2_1t; y[1] = (z - y[0]) - 3 * pio2_1t; return 3; } else { z = x + 3 * pio2_1; y[0] = z + 3 * pio2_1t; y[1] = (z - y[0]) + 3 * pio2_1t; return -3; } } else { if (ix == 0x401921fb) /* |x| ~= 4pi/2 */ goto medium; if (!sign) { z = x - 4 * pio2_1; y[0] = z - 4 * pio2_1t; y[1] = (z - y[0]) - 4 * pio2_1t; return 4; } else { z = x + 4 * pio2_1; y[0] = z + 4 * pio2_1t; y[1] = (z - y[0]) + 4 * pio2_1t; return -4; } } } if (ix < 0x413921fb) { /* |x| ~< 2^20*(pi/2), medium size */ medium: fn = __rint(x * invpio2); n = (INT32)fn; r = x - fn * pio2_1; w = fn * pio2_1t; /* 1st round, good to 85 bits */ /* Matters with directed rounding. */ if (r - w < -pio4) { n--; fn--; r = x - fn * pio2_1; w = fn * pio2_1t; } else if (r - w > pio4) { n++; fn++; r = x - fn * pio2_1; w = fn * pio2_1t; } y[0] = r - w; u.f = y[0]; ey = u.i >> 52 & 0x7ff; ex = ix >> 20; if (ex - ey > 16) { /* 2nd round, good to 118 bits */ t = r; w = fn * pio2_2; r = t - w; w = fn * pio2_2t - ((t - r) - w); y[0] = r - w; u.f = y[0]; ey = u.i >> 52 & 0x7ff; if (ex - ey > 49) { /* 3rd round, good to 151 bits, covers all cases */ t = r; w = fn * pio2_3; r = t - w; w = fn * pio2_3t - ((t - r) - w); y[0] = r - w; } } y[1] = (r - y[0]) - w; return n; } /* * all other (large) arguments */ if (ix >= 0x7ff00000) { /* x is inf or NaN */ y[0] = y[1] = x - x; return 0; } /* set z = scalbn(|x|,-ilogb(x)+23) */ u.f = x; u.i &= (UINT64)-1 >> 12; u.i |= (UINT64)(0x3ff + 23) << 52; z = u.f; for (i = 0; i < 2; i++) { tx[i] = (double)(INT32)z; z = (z - tx[i]) * 0x1p24; } tx[i] = z; /* skip zero terms, first term is non-zero */ while (tx[i] == 0.0) i--; n = __rem_pio2_large(tx, ty, (int)(ix >> 20) - (0x3ff + 23), i + 1, 1); if (sign) { y[0] = -ty[0]; y[1] = -ty[1]; return -n; } y[0] = ty[0]; y[1] = ty[1]; return n; } /* Copied from musl: src/math/__sin.c */ static double __sin(double x, double y, int iy) { static const double S1 = -1.66666666666666324348e-01, S2 = 8.33333333332248946124e-03, S3 = -1.98412698298579493134e-04, S4 = 2.75573137070700676789e-06, S5 = -2.50507602534068634195e-08, S6 = 1.58969099521155010221e-10; double z, r, v, w; z = x * x; w = z * z; r = S2 + z * (S3 + z * S4) + z * w * (S5 + z * S6); v = z * x; if (iy == 0) return x + v * (S1 + z * r); else return x - ((z * (0.5 * y - v * r) - y) - v * S1); } /* Copied from musl: src/math/__cos.c */ static double __cos(double x, double y) { static const double C1 = 4.16666666666666019037e-02, C2 = -1.38888888888741095749e-03, C3 = 2.48015872894767294178e-05, C4 = -2.75573143513906633035e-07, C5 = 2.08757232129817482790e-09, C6 = -1.13596475577881948265e-11; double hz, z, r, w; z = x * x; w = z * z; r = z * (C1 + z * (C2 + z * C3)) + w * w * (C4 + z * (C5 + z * C6)); hz = 0.5 * z; w = 1.0 - hz; return w + (((1.0 - w) - hz) + (z * r - x * y)); } /* Copied from musl: src/math/__tan.c */ static double __tan(double x, double y, int odd) { static const double T[] = { 3.33333333333334091986e-01, 1.33333333333201242699e-01, 5.39682539762260521377e-02, 2.18694882948595424599e-02, 8.86323982359930005737e-03, 3.59207910759131235356e-03, 1.45620945432529025516e-03, 5.88041240820264096874e-04, 2.46463134818469906812e-04, 7.81794442939557092300e-05, 7.14072491382608190305e-05, -1.85586374855275456654e-05, 2.59073051863633712884e-05, }; static const double pio4 = 7.85398163397448278999e-01; static const double pio4lo = 3.06161699786838301793e-17; double z, r, v, w, s, a, w0, a0; UINT32 hx; int big, sign; hx = *(ULONGLONG*)&x >> 32; big = (hx & 0x7fffffff) >= 0x3FE59428; /* |x| >= 0.6744 */ if (big) { sign = hx >> 31; if (sign) { x = -x; y = -y; } x = (pio4 - x) + (pio4lo - y); y = 0.0; } z = x * x; w = z * z; r = T[1] + w * (T[3] + w * (T[5] + w * (T[7] + w * (T[9] + w * T[11])))); v = z * (T[2] + w * (T[4] + w * (T[6] + w * (T[8] + w * (T[10] + w * T[12]))))); s = z * x; r = y + z * (s * (r + v) + y) + s * T[0]; w = x + r; if (big) { s = 1 - 2 * odd; v = s - 2.0 * (x + (r - w * w / (w + s))); return sign ? -v : v; } if (!odd) return w; /* -1.0/(x+r) has up to 2ulp error, so compute it accurately */ w0 = w; *(LONGLONG*)&w0 = *(LONGLONG*)&w0 & 0xffffffff00000000ULL; v = r - (w0 - x); /* w0+v = r+x */ a0 = a = -1.0 / w; *(LONGLONG*)&a0 = *(LONGLONG*)&a0 & 0xffffffff00000000ULL; return a0 + a * (1.0 + a0 * w0 + a0 * v); } /* Copied from musl: src/math/exp_data.c */ static const UINT64 exp_T[] = { 0x0ULL, 0x3ff0000000000000ULL, 0x3c9b3b4f1a88bf6eULL, 0x3feff63da9fb3335ULL, 0xbc7160139cd8dc5dULL, 0x3fefec9a3e778061ULL, 0xbc905e7a108766d1ULL, 0x3fefe315e86e7f85ULL, 0x3c8cd2523567f613ULL, 0x3fefd9b0d3158574ULL, 0xbc8bce8023f98efaULL, 0x3fefd06b29ddf6deULL, 0x3c60f74e61e6c861ULL, 0x3fefc74518759bc8ULL, 0x3c90a3e45b33d399ULL, 0x3fefbe3ecac6f383ULL, 0x3c979aa65d837b6dULL, 0x3fefb5586cf9890fULL, 0x3c8eb51a92fdeffcULL, 0x3fefac922b7247f7ULL, 0x3c3ebe3d702f9cd1ULL, 0x3fefa3ec32d3d1a2ULL, 0xbc6a033489906e0bULL, 0x3fef9b66affed31bULL, 0xbc9556522a2fbd0eULL, 0x3fef9301d0125b51ULL, 0xbc5080ef8c4eea55ULL, 0x3fef8abdc06c31ccULL, 0xbc91c923b9d5f416ULL, 0x3fef829aaea92de0ULL, 0x3c80d3e3e95c55afULL, 0x3fef7a98c8a58e51ULL, 0xbc801b15eaa59348ULL, 0x3fef72b83c7d517bULL, 0xbc8f1ff055de323dULL, 0x3fef6af9388c8deaULL, 0x3c8b898c3f1353bfULL, 0x3fef635beb6fcb75ULL, 0xbc96d99c7611eb26ULL, 0x3fef5be084045cd4ULL, 0x3c9aecf73e3a2f60ULL, 0x3fef54873168b9aaULL, 0xbc8fe782cb86389dULL, 0x3fef4d5022fcd91dULL, 0x3c8a6f4144a6c38dULL, 0x3fef463b88628cd6ULL, 0x3c807a05b0e4047dULL, 0x3fef3f49917ddc96ULL, 0x3c968efde3a8a894ULL, 0x3fef387a6e756238ULL, 0x3c875e18f274487dULL, 0x3fef31ce4fb2a63fULL, 0x3c80472b981fe7f2ULL, 0x3fef2b4565e27cddULL, 0xbc96b87b3f71085eULL, 0x3fef24dfe1f56381ULL, 0x3c82f7e16d09ab31ULL, 0x3fef1e9df51fdee1ULL, 0xbc3d219b1a6fbffaULL, 0x3fef187fd0dad990ULL, 0x3c8b3782720c0ab4ULL, 0x3fef1285a6e4030bULL, 0x3c6e149289cecb8fULL, 0x3fef0cafa93e2f56ULL, 0x3c834d754db0abb6ULL, 0x3fef06fe0a31b715ULL, 0x3c864201e2ac744cULL, 0x3fef0170fc4cd831ULL, 0x3c8fdd395dd3f84aULL, 0x3feefc08b26416ffULL, 0xbc86a3803b8e5b04ULL, 0x3feef6c55f929ff1ULL, 0xbc924aedcc4b5068ULL, 0x3feef1a7373aa9cbULL, 0xbc9907f81b512d8eULL, 0x3feeecae6d05d866ULL, 0xbc71d1e83e9436d2ULL, 0x3feee7db34e59ff7ULL, 0xbc991919b3ce1b15ULL, 0x3feee32dc313a8e5ULL, 0x3c859f48a72a4c6dULL, 0x3feedea64c123422ULL, 0xbc9312607a28698aULL, 0x3feeda4504ac801cULL, 0xbc58a78f4817895bULL, 0x3feed60a21f72e2aULL, 0xbc7c2c9b67499a1bULL, 0x3feed1f5d950a897ULL, 0x3c4363ed60c2ac11ULL, 0x3feece086061892dULL, 0x3c9666093b0664efULL, 0x3feeca41ed1d0057ULL, 0x3c6ecce1daa10379ULL, 0x3feec6a2b5c13cd0ULL, 0x3c93ff8e3f0f1230ULL, 0x3feec32af0d7d3deULL, 0x3c7690cebb7aafb0ULL, 0x3feebfdad5362a27ULL, 0x3c931dbdeb54e077ULL, 0x3feebcb299fddd0dULL, 0xbc8f94340071a38eULL, 0x3feeb9b2769d2ca7ULL, 0xbc87deccdc93a349ULL, 0x3feeb6daa2cf6642ULL, 0xbc78dec6bd0f385fULL, 0x3feeb42b569d4f82ULL, 0xbc861246ec7b5cf6ULL, 0x3feeb1a4ca5d920fULL, 0x3c93350518fdd78eULL, 0x3feeaf4736b527daULL, 0x3c7b98b72f8a9b05ULL, 0x3feead12d497c7fdULL, 0x3c9063e1e21c5409ULL, 0x3feeab07dd485429ULL, 0x3c34c7855019c6eaULL, 0x3feea9268a5946b7ULL, 0x3c9432e62b64c035ULL, 0x3feea76f15ad2148ULL, 0xbc8ce44a6199769fULL, 0x3feea5e1b976dc09ULL, 0xbc8c33c53bef4da8ULL, 0x3feea47eb03a5585ULL, 0xbc845378892be9aeULL, 0x3feea34634ccc320ULL, 0xbc93cedd78565858ULL, 0x3feea23882552225ULL, 0x3c5710aa807e1964ULL, 0x3feea155d44ca973ULL, 0xbc93b3efbf5e2228ULL, 0x3feea09e667f3bcdULL, 0xbc6a12ad8734b982ULL, 0x3feea012750bdabfULL, 0xbc6367efb86da9eeULL, 0x3fee9fb23c651a2fULL, 0xbc80dc3d54e08851ULL, 0x3fee9f7df9519484ULL, 0xbc781f647e5a3ecfULL, 0x3fee9f75e8ec5f74ULL, 0xbc86ee4ac08b7db0ULL, 0x3fee9f9a48a58174ULL, 0xbc8619321e55e68aULL, 0x3fee9feb564267c9ULL, 0x3c909ccb5e09d4d3ULL, 0x3feea0694fde5d3fULL, 0xbc7b32dcb94da51dULL, 0x3feea11473eb0187ULL, 0x3c94ecfd5467c06bULL, 0x3feea1ed0130c132ULL, 0x3c65ebe1abd66c55ULL, 0x3feea2f336cf4e62ULL, 0xbc88a1c52fb3cf42ULL, 0x3feea427543e1a12ULL, 0xbc9369b6f13b3734ULL, 0x3feea589994cce13ULL, 0xbc805e843a19ff1eULL, 0x3feea71a4623c7adULL, 0xbc94d450d872576eULL, 0x3feea8d99b4492edULL, 0x3c90ad675b0e8a00ULL, 0x3feeaac7d98a6699ULL, 0x3c8db72fc1f0eab4ULL, 0x3feeace5422aa0dbULL, 0xbc65b6609cc5e7ffULL, 0x3feeaf3216b5448cULL, 0x3c7bf68359f35f44ULL, 0x3feeb1ae99157736ULL, 0xbc93091fa71e3d83ULL, 0x3feeb45b0b91ffc6ULL, 0xbc5da9b88b6c1e29ULL, 0x3feeb737b0cdc5e5ULL, 0xbc6c23f97c90b959ULL, 0x3feeba44cbc8520fULL, 0xbc92434322f4f9aaULL, 0x3feebd829fde4e50ULL, 0xbc85ca6cd7668e4bULL, 0x3feec0f170ca07baULL, 0x3c71affc2b91ce27ULL, 0x3feec49182a3f090ULL, 0x3c6dd235e10a73bbULL, 0x3feec86319e32323ULL, 0xbc87c50422622263ULL, 0x3feecc667b5de565ULL, 0x3c8b1c86e3e231d5ULL, 0x3feed09bec4a2d33ULL, 0xbc91bbd1d3bcbb15ULL, 0x3feed503b23e255dULL, 0x3c90cc319cee31d2ULL, 0x3feed99e1330b358ULL, 0x3c8469846e735ab3ULL, 0x3feede6b5579fdbfULL, 0xbc82dfcd978e9db4ULL, 0x3feee36bbfd3f37aULL, 0x3c8c1a7792cb3387ULL, 0x3feee89f995ad3adULL, 0xbc907b8f4ad1d9faULL, 0x3feeee07298db666ULL, 0xbc55c3d956dcaebaULL, 0x3feef3a2b84f15fbULL, 0xbc90a40e3da6f640ULL, 0x3feef9728de5593aULL, 0xbc68d6f438ad9334ULL, 0x3feeff76f2fb5e47ULL, 0xbc91eee26b588a35ULL, 0x3fef05b030a1064aULL, 0x3c74ffd70a5fddcdULL, 0x3fef0c1e904bc1d2ULL, 0xbc91bdfbfa9298acULL, 0x3fef12c25bd71e09ULL, 0x3c736eae30af0cb3ULL, 0x3fef199bdd85529cULL, 0x3c8ee3325c9ffd94ULL, 0x3fef20ab5fffd07aULL, 0x3c84e08fd10959acULL, 0x3fef27f12e57d14bULL, 0x3c63cdaf384e1a67ULL, 0x3fef2f6d9406e7b5ULL, 0x3c676b2c6c921968ULL, 0x3fef3720dcef9069ULL, 0xbc808a1883ccb5d2ULL, 0x3fef3f0b555dc3faULL, 0xbc8fad5d3ffffa6fULL, 0x3fef472d4a07897cULL, 0xbc900dae3875a949ULL, 0x3fef4f87080d89f2ULL, 0x3c74a385a63d07a7ULL, 0x3fef5818dcfba487ULL, 0xbc82919e2040220fULL, 0x3fef60e316c98398ULL, 0x3c8e5a50d5c192acULL, 0x3fef69e603db3285ULL, 0x3c843a59ac016b4bULL, 0x3fef7321f301b460ULL, 0xbc82d52107b43e1fULL, 0x3fef7c97337b9b5fULL, 0xbc892ab93b470dc9ULL, 0x3fef864614f5a129ULL, 0x3c74b604603a88d3ULL, 0x3fef902ee78b3ff6ULL, 0x3c83c5ec519d7271ULL, 0x3fef9a51fbc74c83ULL, 0xbc8ff7128fd391f0ULL, 0x3fefa4afa2a490daULL, 0xbc8dae98e223747dULL, 0x3fefaf482d8e67f1ULL, 0x3c8ec3bc41aa2008ULL, 0x3fefba1bee615a27ULL, 0x3c842b94c3a9eb32ULL, 0x3fefc52b376bba97ULL, 0x3c8a64a931d185eeULL, 0x3fefd0765b6e4540ULL, 0xbc8e37bae43be3edULL, 0x3fefdbfdad9cbe14ULL, 0x3c77893b4d91cd9dULL, 0x3fefe7c1819e90d8ULL, 0x3c5305c14160cc89ULL, 0x3feff3c22b8f71f1ULL }; /* Compute y+TAIL = log(x) where the rounded result is y and TAIL has about additional 15 bits precision. IX is the bit representation of x, but normalized in the subnormal range using the sign bit for the exponent. */ static double pow_log(UINT64 ix, double *tail) { static const struct { double invc, logc, logctail; } T[] = { {0x1.6a00000000000p+0, -0x1.62c82f2b9c800p-2, 0x1.ab42428375680p-48}, {0x1.6800000000000p+0, -0x1.5d1bdbf580800p-2, -0x1.ca508d8e0f720p-46}, {0x1.6600000000000p+0, -0x1.5767717455800p-2, -0x1.362a4d5b6506dp-45}, {0x1.6400000000000p+0, -0x1.51aad872df800p-2, -0x1.684e49eb067d5p-49}, {0x1.6200000000000p+0, -0x1.4be5f95777800p-2, -0x1.41b6993293ee0p-47}, {0x1.6000000000000p+0, -0x1.4618bc21c6000p-2, 0x1.3d82f484c84ccp-46}, {0x1.5e00000000000p+0, -0x1.404308686a800p-2, 0x1.c42f3ed820b3ap-50}, {0x1.5c00000000000p+0, -0x1.3a64c55694800p-2, 0x1.0b1c686519460p-45}, {0x1.5a00000000000p+0, -0x1.347dd9a988000p-2, 0x1.5594dd4c58092p-45}, {0x1.5800000000000p+0, -0x1.2e8e2bae12000p-2, 0x1.67b1e99b72bd8p-45}, {0x1.5600000000000p+0, -0x1.2895a13de8800p-2, 0x1.5ca14b6cfb03fp-46}, {0x1.5600000000000p+0, -0x1.2895a13de8800p-2, 0x1.5ca14b6cfb03fp-46}, {0x1.5400000000000p+0, -0x1.22941fbcf7800p-2, -0x1.65a242853da76p-46}, {0x1.5200000000000p+0, -0x1.1c898c1699800p-2, -0x1.fafbc68e75404p-46}, {0x1.5000000000000p+0, -0x1.1675cababa800p-2, 0x1.f1fc63382a8f0p-46}, {0x1.4e00000000000p+0, -0x1.1058bf9ae4800p-2, -0x1.6a8c4fd055a66p-45}, {0x1.4c00000000000p+0, -0x1.0a324e2739000p-2, -0x1.c6bee7ef4030ep-47}, {0x1.4a00000000000p+0, -0x1.0402594b4d000p-2, -0x1.036b89ef42d7fp-48}, {0x1.4a00000000000p+0, -0x1.0402594b4d000p-2, -0x1.036b89ef42d7fp-48}, {0x1.4800000000000p+0, -0x1.fb9186d5e4000p-3, 0x1.d572aab993c87p-47}, {0x1.4600000000000p+0, -0x1.ef0adcbdc6000p-3, 0x1.b26b79c86af24p-45}, {0x1.4400000000000p+0, -0x1.e27076e2af000p-3, -0x1.72f4f543fff10p-46}, {0x1.4200000000000p+0, -0x1.d5c216b4fc000p-3, 0x1.1ba91bbca681bp-45}, {0x1.4000000000000p+0, -0x1.c8ff7c79aa000p-3, 0x1.7794f689f8434p-45}, {0x1.4000000000000p+0, -0x1.c8ff7c79aa000p-3, 0x1.7794f689f8434p-45}, {0x1.3e00000000000p+0, -0x1.bc286742d9000p-3, 0x1.94eb0318bb78fp-46}, {0x1.3c00000000000p+0, -0x1.af3c94e80c000p-3, 0x1.a4e633fcd9066p-52}, {0x1.3a00000000000p+0, -0x1.a23bc1fe2b000p-3, -0x1.58c64dc46c1eap-45}, {0x1.3a00000000000p+0, -0x1.a23bc1fe2b000p-3, -0x1.58c64dc46c1eap-45}, {0x1.3800000000000p+0, -0x1.9525a9cf45000p-3, -0x1.ad1d904c1d4e3p-45}, {0x1.3600000000000p+0, -0x1.87fa06520d000p-3, 0x1.bbdbf7fdbfa09p-45}, {0x1.3400000000000p+0, -0x1.7ab890210e000p-3, 0x1.bdb9072534a58p-45}, {0x1.3400000000000p+0, -0x1.7ab890210e000p-3, 0x1.bdb9072534a58p-45}, {0x1.3200000000000p+0, -0x1.6d60fe719d000p-3, -0x1.0e46aa3b2e266p-46}, {0x1.3000000000000p+0, -0x1.5ff3070a79000p-3, -0x1.e9e439f105039p-46}, {0x1.3000000000000p+0, -0x1.5ff3070a79000p-3, -0x1.e9e439f105039p-46}, {0x1.2e00000000000p+0, -0x1.526e5e3a1b000p-3, -0x1.0de8b90075b8fp-45}, {0x1.2c00000000000p+0, -0x1.44d2b6ccb8000p-3, 0x1.70cc16135783cp-46}, {0x1.2c00000000000p+0, -0x1.44d2b6ccb8000p-3, 0x1.70cc16135783cp-46}, {0x1.2a00000000000p+0, -0x1.371fc201e9000p-3, 0x1.178864d27543ap-48}, {0x1.2800000000000p+0, -0x1.29552f81ff000p-3, -0x1.48d301771c408p-45}, {0x1.2600000000000p+0, -0x1.1b72ad52f6000p-3, -0x1.e80a41811a396p-45}, {0x1.2600000000000p+0, -0x1.1b72ad52f6000p-3, -0x1.e80a41811a396p-45}, {0x1.2400000000000p+0, -0x1.0d77e7cd09000p-3, 0x1.a699688e85bf4p-47}, {0x1.2400000000000p+0, -0x1.0d77e7cd09000p-3, 0x1.a699688e85bf4p-47}, {0x1.2200000000000p+0, -0x1.fec9131dbe000p-4, -0x1.575545ca333f2p-45}, {0x1.2000000000000p+0, -0x1.e27076e2b0000p-4, 0x1.a342c2af0003cp-45}, {0x1.2000000000000p+0, -0x1.e27076e2b0000p-4, 0x1.a342c2af0003cp-45}, {0x1.1e00000000000p+0, -0x1.c5e548f5bc000p-4, -0x1.d0c57585fbe06p-46}, {0x1.1c00000000000p+0, -0x1.a926d3a4ae000p-4, 0x1.53935e85baac8p-45}, {0x1.1c00000000000p+0, -0x1.a926d3a4ae000p-4, 0x1.53935e85baac8p-45}, {0x1.1a00000000000p+0, -0x1.8c345d631a000p-4, 0x1.37c294d2f5668p-46}, {0x1.1a00000000000p+0, -0x1.8c345d631a000p-4, 0x1.37c294d2f5668p-46}, {0x1.1800000000000p+0, -0x1.6f0d28ae56000p-4, -0x1.69737c93373dap-45}, {0x1.1600000000000p+0, -0x1.51b073f062000p-4, 0x1.f025b61c65e57p-46}, {0x1.1600000000000p+0, -0x1.51b073f062000p-4, 0x1.f025b61c65e57p-46}, {0x1.1400000000000p+0, -0x1.341d7961be000p-4, 0x1.c5edaccf913dfp-45}, {0x1.1400000000000p+0, -0x1.341d7961be000p-4, 0x1.c5edaccf913dfp-45}, {0x1.1200000000000p+0, -0x1.16536eea38000p-4, 0x1.47c5e768fa309p-46}, {0x1.1000000000000p+0, -0x1.f0a30c0118000p-5, 0x1.d599e83368e91p-45}, {0x1.1000000000000p+0, -0x1.f0a30c0118000p-5, 0x1.d599e83368e91p-45}, {0x1.0e00000000000p+0, -0x1.b42dd71198000p-5, 0x1.c827ae5d6704cp-46}, {0x1.0e00000000000p+0, -0x1.b42dd71198000p-5, 0x1.c827ae5d6704cp-46}, {0x1.0c00000000000p+0, -0x1.77458f632c000p-5, -0x1.cfc4634f2a1eep-45}, {0x1.0c00000000000p+0, -0x1.77458f632c000p-5, -0x1.cfc4634f2a1eep-45}, {0x1.0a00000000000p+0, -0x1.39e87b9fec000p-5, 0x1.502b7f526feaap-48}, {0x1.0a00000000000p+0, -0x1.39e87b9fec000p-5, 0x1.502b7f526feaap-48}, {0x1.0800000000000p+0, -0x1.f829b0e780000p-6, -0x1.980267c7e09e4p-45}, {0x1.0800000000000p+0, -0x1.f829b0e780000p-6, -0x1.980267c7e09e4p-45}, {0x1.0600000000000p+0, -0x1.7b91b07d58000p-6, -0x1.88d5493faa639p-45}, {0x1.0400000000000p+0, -0x1.fc0a8b0fc0000p-7, -0x1.f1e7cf6d3a69cp-50}, {0x1.0400000000000p+0, -0x1.fc0a8b0fc0000p-7, -0x1.f1e7cf6d3a69cp-50}, {0x1.0200000000000p+0, -0x1.fe02a6b100000p-8, -0x1.9e23f0dda40e4p-46}, {0x1.0200000000000p+0, -0x1.fe02a6b100000p-8, -0x1.9e23f0dda40e4p-46}, {0x1.0000000000000p+0, 0x0.0000000000000p+0, 0x0.0000000000000p+0}, {0x1.0000000000000p+0, 0x0.0000000000000p+0, 0x0.0000000000000p+0}, {0x1.fc00000000000p-1, 0x1.0101575890000p-7, -0x1.0c76b999d2be8p-46}, {0x1.f800000000000p-1, 0x1.0205658938000p-6, -0x1.3dc5b06e2f7d2p-45}, {0x1.f400000000000p-1, 0x1.8492528c90000p-6, -0x1.aa0ba325a0c34p-45}, {0x1.f000000000000p-1, 0x1.0415d89e74000p-5, 0x1.111c05cf1d753p-47}, {0x1.ec00000000000p-1, 0x1.466aed42e0000p-5, -0x1.c167375bdfd28p-45}, {0x1.e800000000000p-1, 0x1.894aa149fc000p-5, -0x1.97995d05a267dp-46}, {0x1.e400000000000p-1, 0x1.ccb73cdddc000p-5, -0x1.a68f247d82807p-46}, {0x1.e200000000000p-1, 0x1.eea31c006c000p-5, -0x1.e113e4fc93b7bp-47}, {0x1.de00000000000p-1, 0x1.1973bd1466000p-4, -0x1.5325d560d9e9bp-45}, {0x1.da00000000000p-1, 0x1.3bdf5a7d1e000p-4, 0x1.cc85ea5db4ed7p-45}, {0x1.d600000000000p-1, 0x1.5e95a4d97a000p-4, -0x1.c69063c5d1d1ep-45}, {0x1.d400000000000p-1, 0x1.700d30aeac000p-4, 0x1.c1e8da99ded32p-49}, {0x1.d000000000000p-1, 0x1.9335e5d594000p-4, 0x1.3115c3abd47dap-45}, {0x1.cc00000000000p-1, 0x1.b6ac88dad6000p-4, -0x1.390802bf768e5p-46}, {0x1.ca00000000000p-1, 0x1.c885801bc4000p-4, 0x1.646d1c65aacd3p-45}, {0x1.c600000000000p-1, 0x1.ec739830a2000p-4, -0x1.dc068afe645e0p-45}, {0x1.c400000000000p-1, 0x1.fe89139dbe000p-4, -0x1.534d64fa10afdp-45}, {0x1.c000000000000p-1, 0x1.1178e8227e000p-3, 0x1.1ef78ce2d07f2p-45}, {0x1.be00000000000p-1, 0x1.1aa2b7e23f000p-3, 0x1.ca78e44389934p-45}, {0x1.ba00000000000p-1, 0x1.2d1610c868000p-3, 0x1.39d6ccb81b4a1p-47}, {0x1.b800000000000p-1, 0x1.365fcb0159000p-3, 0x1.62fa8234b7289p-51}, {0x1.b400000000000p-1, 0x1.4913d8333b000p-3, 0x1.5837954fdb678p-45}, {0x1.b200000000000p-1, 0x1.527e5e4a1b000p-3, 0x1.633e8e5697dc7p-45}, {0x1.ae00000000000p-1, 0x1.6574ebe8c1000p-3, 0x1.9cf8b2c3c2e78p-46}, {0x1.ac00000000000p-1, 0x1.6f0128b757000p-3, -0x1.5118de59c21e1p-45}, {0x1.aa00000000000p-1, 0x1.7898d85445000p-3, -0x1.c661070914305p-46}, {0x1.a600000000000p-1, 0x1.8beafeb390000p-3, -0x1.73d54aae92cd1p-47}, {0x1.a400000000000p-1, 0x1.95a5adcf70000p-3, 0x1.7f22858a0ff6fp-47}, {0x1.a000000000000p-1, 0x1.a93ed3c8ae000p-3, -0x1.8724350562169p-45}, {0x1.9e00000000000p-1, 0x1.b31d8575bd000p-3, -0x1.c358d4eace1aap-47}, {0x1.9c00000000000p-1, 0x1.bd087383be000p-3, -0x1.d4bc4595412b6p-45}, {0x1.9a00000000000p-1, 0x1.c6ffbc6f01000p-3, -0x1.1ec72c5962bd2p-48}, {0x1.9600000000000p-1, 0x1.db13db0d49000p-3, -0x1.aff2af715b035p-45}, {0x1.9400000000000p-1, 0x1.e530effe71000p-3, 0x1.212276041f430p-51}, {0x1.9200000000000p-1, 0x1.ef5ade4dd0000p-3, -0x1.a211565bb8e11p-51}, {0x1.9000000000000p-1, 0x1.f991c6cb3b000p-3, 0x1.bcbecca0cdf30p-46}, {0x1.8c00000000000p-1, 0x1.07138604d5800p-2, 0x1.89cdb16ed4e91p-48}, {0x1.8a00000000000p-1, 0x1.0c42d67616000p-2, 0x1.7188b163ceae9p-45}, {0x1.8800000000000p-1, 0x1.1178e8227e800p-2, -0x1.c210e63a5f01cp-45}, {0x1.8600000000000p-1, 0x1.16b5ccbacf800p-2, 0x1.b9acdf7a51681p-45}, {0x1.8400000000000p-1, 0x1.1bf99635a6800p-2, 0x1.ca6ed5147bdb7p-45}, {0x1.8200000000000p-1, 0x1.214456d0eb800p-2, 0x1.a87deba46baeap-47}, {0x1.7e00000000000p-1, 0x1.2bef07cdc9000p-2, 0x1.a9cfa4a5004f4p-45}, {0x1.7c00000000000p-1, 0x1.314f1e1d36000p-2, -0x1.8e27ad3213cb8p-45}, {0x1.7a00000000000p-1, 0x1.36b6776be1000p-2, 0x1.16ecdb0f177c8p-46}, {0x1.7800000000000p-1, 0x1.3c25277333000p-2, 0x1.83b54b606bd5cp-46}, {0x1.7600000000000p-1, 0x1.419b423d5e800p-2, 0x1.8e436ec90e09dp-47}, {0x1.7400000000000p-1, 0x1.4718dc271c800p-2, -0x1.f27ce0967d675p-45}, {0x1.7200000000000p-1, 0x1.4c9e09e173000p-2, -0x1.e20891b0ad8a4p-45}, {0x1.7000000000000p-1, 0x1.522ae0738a000p-2, 0x1.ebe708164c759p-45}, {0x1.6e00000000000p-1, 0x1.57bf753c8d000p-2, 0x1.fadedee5d40efp-46}, {0x1.6c00000000000p-1, 0x1.5d5bddf596000p-2, -0x1.a0b2a08a465dcp-47}, }; static const double A[] = { -0x1p-1, 0x1.555555555556p-2 * -2, -0x1.0000000000006p-2 * -2, 0x1.999999959554ep-3 * 4, -0x1.555555529a47ap-3 * 4, 0x1.2495b9b4845e9p-3 * -8, -0x1.0002b8b263fc3p-3 * -8 }; static const double ln2hi = 0x1.62e42fefa3800p-1, ln2lo = 0x1.ef35793c76730p-45; double z, r, y, invc, logc, logctail, kd, hi, t1, t2, lo, lo1, lo2, p; double zhi, zlo, rhi, rlo, ar, ar2, ar3, lo3, lo4, arhi, arhi2; UINT64 iz, tmp; int k, i; /* x = 2^k z; where z is in range [OFF,2*OFF) and exact. The range is split into N subintervals. The ith subinterval contains z and c is near its center. */ tmp = ix - 0x3fe6955500000000ULL; i = (tmp >> (52 - 7)) % (1 << 7); k = (INT64)tmp >> 52; /* arithmetic shift */ iz = ix - (tmp & 0xfffULL << 52); z = *(double*)&iz; kd = k; /* log(x) = k*Ln2 + log(c) + log1p(z/c-1). */ invc = T[i].invc; logc = T[i].logc; logctail = T[i].logctail; /* Note: 1/c is j/N or j/N/2 where j is an integer in [N,2N) and |z/c - 1| < 1/N, so r = z/c - 1 is exactly representible. */ /* Split z such that rhi, rlo and rhi*rhi are exact and |rlo| <= |r|. */ iz = (iz + (1ULL << 31)) & (-1ULL << 32); zhi = *(double*)&iz; zlo = z - zhi; rhi = zhi * invc - 1.0; rlo = zlo * invc; r = rhi + rlo; /* k*Ln2 + log(c) + r. */ t1 = kd * ln2hi + logc; t2 = t1 + r; lo1 = kd * ln2lo + logctail; lo2 = t1 - t2 + r; /* Evaluation is optimized assuming superscalar pipelined execution. */ ar = A[0] * r; /* A[0] = -0.5. */ ar2 = r * ar; ar3 = r * ar2; /* k*Ln2 + log(c) + r + A[0]*r*r. */ arhi = A[0] * rhi; arhi2 = rhi * arhi; hi = t2 + arhi2; lo3 = rlo * (ar + arhi); lo4 = t2 - hi + arhi2; /* p = log1p(r) - r - A[0]*r*r. */ p = (ar3 * (A[1] + r * A[2] + ar2 * (A[3] + r * A[4] + ar2 * (A[5] + r * A[6])))); lo = lo1 + lo2 + lo3 + lo4 + p; y = hi + lo; *tail = hi - y + lo; return y; } /* Computes sign*exp(x+xtail) where |xtail| < 2^-8/N and |xtail| <= |x|. The sign_bias argument is SIGN_BIAS or 0 and sets the sign to -1 or 1. */ static double pow_exp(double argx, double argy, double x, double xtail, UINT32 sign_bias) { static const double C[] = { 0x1.ffffffffffdbdp-2, 0x1.555555555543cp-3, 0x1.55555cf172b91p-5, 0x1.1111167a4d017p-7 }; static const double invln2N = 0x1.71547652b82fep0 * (1 << 7), negln2hiN = -0x1.62e42fefa0000p-8, negln2loN = -0x1.cf79abc9e3b3ap-47; UINT32 abstop; UINT64 ki, idx, top, sbits; double kd, z, r, r2, scale, tail, tmp; abstop = (*(UINT64*)&x >> 52) & 0x7ff; if (abstop - 0x3c9 >= 0x408 - 0x3c9) { if (abstop - 0x3c9 >= 0x80000000) { /* Avoid spurious underflow for tiny x. */ /* Note: 0 is common input. */ double one = 1.0 + x; return sign_bias ? -one : one; } if (abstop >= 0x409) { /* Note: inf and nan are already handled. */ if (*(UINT64*)&x >> 63) return (sign_bias ? -DBL_MIN : DBL_MIN) * DBL_MIN; return (sign_bias ? -DBL_MAX : DBL_MAX) * DBL_MAX; } /* Large x is special cased below. */ abstop = 0; } /* exp(x) = 2^(k/N) * exp(r), with exp(r) in [2^(-1/2N),2^(1/2N)]. */ /* x = ln2/N*k + r, with int k and r in [-ln2/2N, ln2/2N]. */ z = invln2N * x; kd = __round(z); ki = (INT64)kd; r = x + kd * negln2hiN + kd * negln2loN; /* The code assumes 2^-200 < |xtail| < 2^-8/N. */ r += xtail; /* 2^(k/N) ~= scale * (1 + tail). */ idx = 2 * (ki % (1 << 7)); top = (ki + sign_bias) << (52 - 7); tail = *(double*)&exp_T[idx]; /* This is only a valid scale when -1023*N < k < 1024*N. */ sbits = exp_T[idx + 1] + top; /* exp(x) = 2^(k/N) * exp(r) ~= scale + scale * (tail + exp(r) - 1). */ /* Evaluation is optimized assuming superscalar pipelined execution. */ r2 = r * r; /* Without fma the worst case error is 0.25/N ulp larger. */ /* Worst case error is less than 0.5+1.11/N+(abs poly error * 2^53) ulp. */ tmp = tail + r + r2 * (C[0] + r * C[1]) + r2 * r2 * (C[2] + r * C[3]); if (abstop == 0) { /* Handle cases that may overflow or underflow when computing the result that is scale*(1+TMP) without intermediate rounding. The bit representation of scale is in SBITS, however it has a computed exponent that may have overflown into the sign bit so that needs to be adjusted before using it as a double. (int32_t)KI is the k used in the argument reduction and exponent adjustment of scale, positive k here means the result may overflow and negative k means the result may underflow. */ double scale, y; if ((ki & 0x80000000) == 0) { /* k > 0, the exponent of scale might have overflowed by <= 460. */ sbits -= 1009ull << 52; scale = *(double*)&sbits; y = 0x1p1009 * (scale + scale * tmp); return y; } /* k < 0, need special care in the subnormal range. */ sbits += 1022ull << 52; /* Note: sbits is signed scale. */ scale = *(double*)&sbits; y = scale + scale * tmp; if (fabs(y) < 1.0) { /* Round y to the right precision before scaling it into the subnormal range to avoid double rounding that can cause 0.5+E/2 ulp error where E is the worst-case ulp error outside the subnormal range. So this is only useful if the goal is better than 1 ulp worst-case error. */ double hi, lo, one = 1.0; if (y < 0.0) one = -1.0; lo = scale - y + scale * tmp; hi = one + y; lo = one - hi + y + lo; y = hi + lo - one; /* Fix the sign of 0. */ if (y == 0.0) { sbits &= 0x8000000000000000ULL; y = *(double*)&sbits; } /* The underflow exception needs to be signaled explicitly. */ fp_barrier(fp_barrier(0x1p-1022) * 0x1p-1022); y = 0x1p-1022 * y; return y; } y = 0x1p-1022 * y; return y; } scale = *(double*)&sbits; /* Note: tmp == 0 or |tmp| > 2^-200 and scale > 2^-739, so there is no spurious underflow here even without fma. */ return scale + scale * tmp; } /* Returns 0 if not int, 1 if odd int, 2 if even int. The argument is the bit representation of a non-zero finite floating-point value. */ static inline int pow_checkint(UINT64 iy) { int e = iy >> 52 & 0x7ff; if (e < 0x3ff) return 0; if (e > 0x3ff + 52) return 2; if (iy & ((1ULL << (0x3ff + 52 - e)) - 1)) return 0; if (iy & (1ULL << (0x3ff + 52 - e))) return 1; return 2; } /* Copied from musl: src/math/__fpclassify.c */ static short _dclass(double x) { union { double f; UINT64 i; } u = { x }; int e = u.i >> 52 & 0x7ff; if (!e) return u.i << 1 ? FP_SUBNORMAL : FP_ZERO; if (e == 0x7ff) return (u.i << 12) ? FP_NAN : FP_INFINITE; return FP_NORMAL; } static BOOL sqrt_validate( double *x, BOOL update_sw ) { short c = _dclass(*x); if (c == FP_ZERO) return FALSE; if (c == FP_NAN) { /* set signaling bit */ *(ULONGLONG*)x |= 0x8000000000000ULL; return FALSE; } if (signbit(*x)) { *x = -NAN; return FALSE; } if (c == FP_INFINITE) return FALSE; return TRUE; } /********************************************************************* * abs (NTDLL.@) */ int CDECL abs( int i ) { return i >= 0 ? i : -i; } /********************************************************************* * atan (NTDLL.@) * * Copied from musl: src/math/atan.c */ double CDECL atan( double x ) { static const double atanhi[] = { 4.63647609000806093515e-01, 7.85398163397448278999e-01, 9.82793723247329054082e-01, 1.57079632679489655800e+00, }; static const double atanlo[] = { 2.26987774529616870924e-17, 3.06161699786838301793e-17, 1.39033110312309984516e-17, 6.12323399573676603587e-17, }; static const double aT[] = { 3.33333333333329318027e-01, -1.99999999998764832476e-01, 1.42857142725034663711e-01, -1.11111104054623557880e-01, 9.09088713343650656196e-02, -7.69187620504482999495e-02, 6.66107313738753120669e-02, -5.83357013379057348645e-02, 4.97687799461593236017e-02, -3.65315727442169155270e-02, 1.62858201153657823623e-02, }; double w, s1, s2, z; unsigned int ix, sign; int id; ix = *(ULONGLONG*)&x >> 32; sign = ix >> 31; ix &= 0x7fffffff; if (ix >= 0x44100000) { /* if |x| >= 2^66 */ if (isnan(x)) return x; z = atanhi[3] + 7.5231638452626401e-37; return sign ? -z : z; } if (ix < 0x3fdc0000) { /* |x| < 0.4375 */ if (ix < 0x3e400000) { /* |x| < 2^-27 */ if (ix < 0x00100000) /* raise underflow for subnormal x */ fp_barrierf((float)x); return x; } id = -1; } else { x = fabs(x); if (ix < 0x3ff30000) { /* |x| < 1.1875 */ if (ix < 0x3fe60000) { /* 7/16 <= |x| < 11/16 */ id = 0; x = (2.0 * x - 1.0) / (2.0 + x); } else { /* 11/16 <= |x| < 19/16 */ id = 1; x = (x - 1.0) / (x + 1.0); } } else { if (ix < 0x40038000) { /* |x| < 2.4375 */ id = 2; x = (x - 1.5) / (1.0 + 1.5 * x); } else { /* 2.4375 <= |x| < 2^66 */ id = 3; x = -1.0 / x; } } } /* end of argument reduction */ z = x * x; w = z * z; /* break sum from i=0 to 10 aT[i]z**(i+1) into odd and even poly */ s1 = z * (aT[0] + w * (aT[2] + w * (aT[4] + w * (aT[6] + w * (aT[8] + w * aT[10]))))); s2 = w * (aT[1] + w * (aT[3] + w * (aT[5] + w * (aT[7] + w * aT[9])))); if (id < 0) return x - x * (s1 + s2); z = atanhi[id] - (x * (s1 + s2) - atanlo[id] - x); return sign ? -z : z; } /********************************************************************* * atan2 (NTDLL.@) * * Copied from musl: src/math/atan2.c */ double CDECL atan2( double y, double x ) { static const double pi = 3.1415926535897931160E+00, pi_lo = 1.2246467991473531772E-16; double z; unsigned int m, lx, ly, ix, iy; if (isnan(x) || isnan(y)) return x+y; ix = *(ULONGLONG*)&x >> 32; lx = *(ULONGLONG*)&x; iy = *(ULONGLONG*)&y >> 32; ly = *(ULONGLONG*)&y; if (((ix - 0x3ff00000) | lx) == 0) /* x = 1.0 */ return atan(y); m = ((iy >> 31) & 1) | ((ix >> 30) & 2); /* 2*sign(x)+sign(y) */ ix = ix & 0x7fffffff; iy = iy & 0x7fffffff; /* when y = 0 */ if ((iy | ly) == 0) { switch(m) { case 0: case 1: return y; /* atan(+-0,+anything)=+-0 */ case 2: return pi; /* atan(+0,-anything) = pi */ case 3: return -pi; /* atan(-0,-anything) =-pi */ } } /* when x = 0 */ if ((ix | lx) == 0) return m & 1 ? -pi / 2 : pi / 2; /* when x is INF */ if (ix == 0x7ff00000) { if (iy == 0x7ff00000) { switch(m) { case 0: return pi / 4; /* atan(+INF,+INF) */ case 1: return -pi / 4; /* atan(-INF,+INF) */ case 2: return 3 * pi / 4; /* atan(+INF,-INF) */ case 3: return -3 * pi / 4; /* atan(-INF,-INF) */ } } else { switch(m) { case 0: return 0.0; /* atan(+...,+INF) */ case 1: return -0.0; /* atan(-...,+INF) */ case 2: return pi; /* atan(+...,-INF) */ case 3: return -pi; /* atan(-...,-INF) */ } } } /* |y/x| > 0x1p64 */ if (ix + (64 << 20) < iy || iy == 0x7ff00000) return m & 1 ? -pi / 2 : pi / 2; /* z = atan(|y/x|) without spurious underflow */ if ((m & 2) && iy + (64 << 20) < ix) /* |y/x| < 0x1p-64, x<0 */ z = 0; else z = atan(fabs(y / x)); switch (m) { case 0: return z; /* atan(+,+) */ case 1: return -z; /* atan(-,+) */ case 2: return pi - (z - pi_lo); /* atan(+,-) */ default: /* case 3 */ return (z - pi_lo) - pi; /* atan(-,-) */ } } /********************************************************************* * ceil (NTDLL.@) * * Based on musl: src/math/ceilf.c */ double CDECL ceil( double x ) { union {double f; UINT64 i;} u = {x}; int e = (u.i >> 52 & 0x7ff) - 0x3ff; UINT64 m; if (e >= 52) return x; if (e >= 0) { m = 0x000fffffffffffffULL >> e; if ((u.i & m) == 0) return x; if (u.i >> 63 == 0) u.i += m; u.i &= ~m; } else { if (u.i >> 63) return -0.0; else if (u.i << 1) return 1.0; } return u.f; } /********************************************************************* * cos (NTDLL.@) * * Copied from musl: src/math/cos.c */ double CDECL cos( double x ) { double y[2]; UINT32 ix; unsigned n; ix = *(ULONGLONG*)&x >> 32; ix &= 0x7fffffff; /* |x| ~< pi/4 */ if (ix <= 0x3fe921fb) { if (ix < 0x3e46a09e) { /* |x| < 2**-27 * sqrt(2) */ /* raise inexact if x!=0 */ fp_barrier(x + 0x1p120f); return 1.0; } return __cos(x, 0); } /* cos(Inf or NaN) is NaN */ if (isinf(x)) return x - x; if (ix >= 0x7ff00000) return x - x; /* argument reduction */ n = __rem_pio2(x, y); switch (n & 3) { case 0: return __cos(y[0], y[1]); case 1: return -__sin(y[0], y[1], 1); case 2: return -__cos(y[0], y[1]); default: return __sin(y[0], y[1], 1); } } /********************************************************************* * fabs (NTDLL.@) * * Copied from musl: src/math/fabsf.c */ double CDECL fabs( double x ) { union { double f; UINT64 i; } u = { x }; u.i &= ~0ull >> 1; return u.f; } /********************************************************************* * floor (NTDLL.@) * * Based on musl: src/math/floorf.c */ double CDECL floor( double x ) { union {double f; UINT64 i;} u = {x}; int e = (int)(u.i >> 52 & 0x7ff) - 0x3ff; UINT64 m; if (e >= 52) return x; if (e >= 0) { m = 0x000fffffffffffffULL >> e; if ((u.i & m) == 0) return x; if (u.i >> 63) u.i += m; u.i &= ~m; } else { if (u.i >> 63 == 0) return 0; else if (u.i << 1) return -1; } return u.f; } /********************************************************************* * log (NTDLL.@) * * Copied from musl: src/math/log.c src/math/log_data.c */ double CDECL log( double x ) { static const double Ln2hi = 0x1.62e42fefa3800p-1, Ln2lo = 0x1.ef35793c76730p-45; static const double A[] = { -0x1.0000000000001p-1, 0x1.555555551305bp-2, -0x1.fffffffeb459p-3, 0x1.999b324f10111p-3, -0x1.55575e506c89fp-3 }; static const double B[] = { -0x1p-1, 0x1.5555555555577p-2, -0x1.ffffffffffdcbp-3, 0x1.999999995dd0cp-3, -0x1.55555556745a7p-3, 0x1.24924a344de3p-3, -0x1.fffffa4423d65p-4, 0x1.c7184282ad6cap-4, -0x1.999eb43b068ffp-4, 0x1.78182f7afd085p-4, -0x1.5521375d145cdp-4 }; static const struct { double invc, logc; } T[] = { {0x1.734f0c3e0de9fp+0, -0x1.7cc7f79e69000p-2}, {0x1.713786a2ce91fp+0, -0x1.76feec20d0000p-2}, {0x1.6f26008fab5a0p+0, -0x1.713e31351e000p-2}, {0x1.6d1a61f138c7dp+0, -0x1.6b85b38287800p-2}, {0x1.6b1490bc5b4d1p+0, -0x1.65d5590807800p-2}, {0x1.69147332f0cbap+0, -0x1.602d076180000p-2}, {0x1.6719f18224223p+0, -0x1.5a8ca86909000p-2}, {0x1.6524f99a51ed9p+0, -0x1.54f4356035000p-2}, {0x1.63356aa8f24c4p+0, -0x1.4f637c36b4000p-2}, {0x1.614b36b9ddc14p+0, -0x1.49da7fda85000p-2}, {0x1.5f66452c65c4cp+0, -0x1.445923989a800p-2}, {0x1.5d867b5912c4fp+0, -0x1.3edf439b0b800p-2}, {0x1.5babccb5b90dep+0, -0x1.396ce448f7000p-2}, {0x1.59d61f2d91a78p+0, -0x1.3401e17bda000p-2}, {0x1.5805612465687p+0, -0x1.2e9e2ef468000p-2}, {0x1.56397cee76bd3p+0, -0x1.2941b3830e000p-2}, {0x1.54725e2a77f93p+0, -0x1.23ec58cda8800p-2}, {0x1.52aff42064583p+0, -0x1.1e9e129279000p-2}, {0x1.50f22dbb2bddfp+0, -0x1.1956d2b48f800p-2}, {0x1.4f38f4734ded7p+0, -0x1.141679ab9f800p-2}, {0x1.4d843cfde2840p+0, -0x1.0edd094ef9800p-2}, {0x1.4bd3ec078a3c8p+0, -0x1.09aa518db1000p-2}, {0x1.4a27fc3e0258ap+0, -0x1.047e65263b800p-2}, {0x1.4880524d48434p+0, -0x1.feb224586f000p-3}, {0x1.46dce1b192d0bp+0, -0x1.f474a7517b000p-3}, {0x1.453d9d3391854p+0, -0x1.ea4443d103000p-3}, {0x1.43a2744b4845ap+0, -0x1.e020d44e9b000p-3}, {0x1.420b54115f8fbp+0, -0x1.d60a22977f000p-3}, {0x1.40782da3ef4b1p+0, -0x1.cc00104959000p-3}, {0x1.3ee8f5d57fe8fp+0, -0x1.c202956891000p-3}, {0x1.3d5d9a00b4ce9p+0, -0x1.b81178d811000p-3}, {0x1.3bd60c010c12bp+0, -0x1.ae2c9ccd3d000p-3}, {0x1.3a5242b75dab8p+0, -0x1.a45402e129000p-3}, {0x1.38d22cd9fd002p+0, -0x1.9a877681df000p-3}, {0x1.3755bc5847a1cp+0, -0x1.90c6d69483000p-3}, {0x1.35dce49ad36e2p+0, -0x1.87120a645c000p-3}, {0x1.34679984dd440p+0, -0x1.7d68fb4143000p-3}, {0x1.32f5cceffcb24p+0, -0x1.73cb83c627000p-3}, {0x1.3187775a10d49p+0, -0x1.6a39a9b376000p-3}, {0x1.301c8373e3990p+0, -0x1.60b3154b7a000p-3}, {0x1.2eb4ebb95f841p+0, -0x1.5737d76243000p-3}, {0x1.2d50a0219a9d1p+0, -0x1.4dc7b8fc23000p-3}, {0x1.2bef9a8b7fd2ap+0, -0x1.4462c51d20000p-3}, {0x1.2a91c7a0c1babp+0, -0x1.3b08abc830000p-3}, {0x1.293726014b530p+0, -0x1.31b996b490000p-3}, {0x1.27dfa5757a1f5p+0, -0x1.2875490a44000p-3}, {0x1.268b39b1d3bbfp+0, -0x1.1f3b9f879a000p-3}, {0x1.2539d838ff5bdp+0, -0x1.160c8252ca000p-3}, {0x1.23eb7aac9083bp+0, -0x1.0ce7f57f72000p-3}, {0x1.22a012ba940b6p+0, -0x1.03cdc49fea000p-3}, {0x1.2157996cc4132p+0, -0x1.f57bdbc4b8000p-4}, {0x1.201201dd2fc9bp+0, -0x1.e370896404000p-4}, {0x1.1ecf4494d480bp+0, -0x1.d17983ef94000p-4}, {0x1.1d8f5528f6569p+0, -0x1.bf9674ed8a000p-4}, {0x1.1c52311577e7cp+0, -0x1.adc79202f6000p-4}, {0x1.1b17c74cb26e9p+0, -0x1.9c0c3e7288000p-4}, {0x1.19e010c2c1ab6p+0, -0x1.8a646b372c000p-4}, {0x1.18ab07bb670bdp+0, -0x1.78d01b3ac0000p-4}, {0x1.1778a25efbcb6p+0, -0x1.674f145380000p-4}, {0x1.1648d354c31dap+0, -0x1.55e0e6d878000p-4}, {0x1.151b990275fddp+0, -0x1.4485cdea1e000p-4}, {0x1.13f0ea432d24cp+0, -0x1.333d94d6aa000p-4}, {0x1.12c8b7210f9dap+0, -0x1.22079f8c56000p-4}, {0x1.11a3028ecb531p+0, -0x1.10e4698622000p-4}, {0x1.107fbda8434afp+0, -0x1.ffa6c6ad20000p-5}, {0x1.0f5ee0f4e6bb3p+0, -0x1.dda8d4a774000p-5}, {0x1.0e4065d2a9fcep+0, -0x1.bbcece4850000p-5}, {0x1.0d244632ca521p+0, -0x1.9a1894012c000p-5}, {0x1.0c0a77ce2981ap+0, -0x1.788583302c000p-5}, {0x1.0af2f83c636d1p+0, -0x1.5715e67d68000p-5}, {0x1.09ddb98a01339p+0, -0x1.35c8a49658000p-5}, {0x1.08cabaf52e7dfp+0, -0x1.149e364154000p-5}, {0x1.07b9f2f4e28fbp+0, -0x1.e72c082eb8000p-6}, {0x1.06ab58c358f19p+0, -0x1.a55f152528000p-6}, {0x1.059eea5ecf92cp+0, -0x1.63d62cf818000p-6}, {0x1.04949cdd12c90p+0, -0x1.228fb8caa0000p-6}, {0x1.038c6c6f0ada9p+0, -0x1.c317b20f90000p-7}, {0x1.02865137932a9p+0, -0x1.419355daa0000p-7}, {0x1.0182427ea7348p+0, -0x1.81203c2ec0000p-8}, {0x1.008040614b195p+0, -0x1.0040979240000p-9}, {0x1.fe01ff726fa1ap-1, 0x1.feff384900000p-9}, {0x1.fa11cc261ea74p-1, 0x1.7dc41353d0000p-7}, {0x1.f6310b081992ep-1, 0x1.3cea3c4c28000p-6}, {0x1.f25f63ceeadcdp-1, 0x1.b9fc114890000p-6}, {0x1.ee9c8039113e7p-1, 0x1.1b0d8ce110000p-5}, {0x1.eae8078cbb1abp-1, 0x1.58a5bd001c000p-5}, {0x1.e741aa29d0c9bp-1, 0x1.95c8340d88000p-5}, {0x1.e3a91830a99b5p-1, 0x1.d276aef578000p-5}, {0x1.e01e009609a56p-1, 0x1.07598e598c000p-4}, {0x1.dca01e577bb98p-1, 0x1.253f5e30d2000p-4}, {0x1.d92f20b7c9103p-1, 0x1.42edd8b380000p-4}, {0x1.d5cac66fb5ccep-1, 0x1.606598757c000p-4}, {0x1.d272caa5ede9dp-1, 0x1.7da76356a0000p-4}, {0x1.cf26e3e6b2ccdp-1, 0x1.9ab434e1c6000p-4}, {0x1.cbe6da2a77902p-1, 0x1.b78c7bb0d6000p-4}, {0x1.c8b266d37086dp-1, 0x1.d431332e72000p-4}, {0x1.c5894bd5d5804p-1, 0x1.f0a3171de6000p-4}, {0x1.c26b533bb9f8cp-1, 0x1.067152b914000p-3}, {0x1.bf583eeece73fp-1, 0x1.147858292b000p-3}, {0x1.bc4fd75db96c1p-1, 0x1.2266ecdca3000p-3}, {0x1.b951e0c864a28p-1, 0x1.303d7a6c55000p-3}, {0x1.b65e2c5ef3e2cp-1, 0x1.3dfc33c331000p-3}, {0x1.b374867c9888bp-1, 0x1.4ba366b7a8000p-3}, {0x1.b094b211d304ap-1, 0x1.5933928d1f000p-3}, {0x1.adbe885f2ef7ep-1, 0x1.66acd2418f000p-3}, {0x1.aaf1d31603da2p-1, 0x1.740f8ec669000p-3}, {0x1.a82e63fd358a7p-1, 0x1.815c0f51af000p-3}, {0x1.a5740ef09738bp-1, 0x1.8e92954f68000p-3}, {0x1.a2c2a90ab4b27p-1, 0x1.9bb3602f84000p-3}, {0x1.a01a01393f2d1p-1, 0x1.a8bed1c2c0000p-3}, {0x1.9d79f24db3c1bp-1, 0x1.b5b515c01d000p-3}, {0x1.9ae2505c7b190p-1, 0x1.c2967ccbcc000p-3}, {0x1.9852ef297ce2fp-1, 0x1.cf635d5486000p-3}, {0x1.95cbaeea44b75p-1, 0x1.dc1bd3446c000p-3}, {0x1.934c69de74838p-1, 0x1.e8c01b8cfe000p-3}, {0x1.90d4f2f6752e6p-1, 0x1.f5509c0179000p-3}, {0x1.8e6528effd79dp-1, 0x1.00e6c121fb800p-2}, {0x1.8bfce9fcc007cp-1, 0x1.071b80e93d000p-2}, {0x1.899c0dabec30ep-1, 0x1.0d46b9e867000p-2}, {0x1.87427aa2317fbp-1, 0x1.13687334bd000p-2}, {0x1.84f00acb39a08p-1, 0x1.1980d67234800p-2}, {0x1.82a49e8653e55p-1, 0x1.1f8ffe0cc8000p-2}, {0x1.8060195f40260p-1, 0x1.2595fd7636800p-2}, {0x1.7e22563e0a329p-1, 0x1.2b9300914a800p-2}, {0x1.7beb377dcb5adp-1, 0x1.3187210436000p-2}, {0x1.79baa679725c2p-1, 0x1.377266dec1800p-2}, {0x1.77907f2170657p-1, 0x1.3d54ffbaf3000p-2}, {0x1.756cadbd6130cp-1, 0x1.432eee32fe000p-2} }; static const struct { double chi, clo; } T2[] = { {0x1.61000014fb66bp-1, 0x1.e026c91425b3cp-56}, {0x1.63000034db495p-1, 0x1.dbfea48005d41p-55}, {0x1.650000d94d478p-1, 0x1.e7fa786d6a5b7p-55}, {0x1.67000074e6fadp-1, 0x1.1fcea6b54254cp-57}, {0x1.68ffffedf0faep-1, -0x1.c7e274c590efdp-56}, {0x1.6b0000763c5bcp-1, -0x1.ac16848dcda01p-55}, {0x1.6d0001e5cc1f6p-1, 0x1.33f1c9d499311p-55}, {0x1.6efffeb05f63ep-1, -0x1.e80041ae22d53p-56}, {0x1.710000e86978p-1, 0x1.bff6671097952p-56}, {0x1.72ffffc67e912p-1, 0x1.c00e226bd8724p-55}, {0x1.74fffdf81116ap-1, -0x1.e02916ef101d2p-57}, {0x1.770000f679c9p-1, -0x1.7fc71cd549c74p-57}, {0x1.78ffffa7ec835p-1, 0x1.1bec19ef50483p-55}, {0x1.7affffe20c2e6p-1, -0x1.07e1729cc6465p-56}, {0x1.7cfffed3fc9p-1, -0x1.08072087b8b1cp-55}, {0x1.7efffe9261a76p-1, 0x1.dc0286d9df9aep-55}, {0x1.81000049ca3e8p-1, 0x1.97fd251e54c33p-55}, {0x1.8300017932c8fp-1, -0x1.afee9b630f381p-55}, {0x1.850000633739cp-1, 0x1.9bfbf6b6535bcp-55}, {0x1.87000204289c6p-1, -0x1.bbf65f3117b75p-55}, {0x1.88fffebf57904p-1, -0x1.9006ea23dcb57p-55}, {0x1.8b00022bc04dfp-1, -0x1.d00df38e04b0ap-56}, {0x1.8cfffe50c1b8ap-1, -0x1.8007146ff9f05p-55}, {0x1.8effffc918e43p-1, 0x1.3817bd07a7038p-55}, {0x1.910001efa5fc7p-1, 0x1.93e9176dfb403p-55}, {0x1.9300013467bb9p-1, 0x1.f804e4b980276p-56}, {0x1.94fffe6ee076fp-1, -0x1.f7ef0d9ff622ep-55}, {0x1.96fffde3c12d1p-1, -0x1.082aa962638bap-56}, {0x1.98ffff4458a0dp-1, -0x1.7801b9164a8efp-55}, {0x1.9afffdd982e3ep-1, -0x1.740e08a5a9337p-55}, {0x1.9cfffed49fb66p-1, 0x1.fce08c19bep-60}, {0x1.9f00020f19c51p-1, -0x1.a3faa27885b0ap-55}, {0x1.a10001145b006p-1, 0x1.4ff489958da56p-56}, {0x1.a300007bbf6fap-1, 0x1.cbeab8a2b6d18p-55}, {0x1.a500010971d79p-1, 0x1.8fecadd78793p-55}, {0x1.a70001df52e48p-1, -0x1.f41763dd8abdbp-55}, {0x1.a90001c593352p-1, -0x1.ebf0284c27612p-55}, {0x1.ab0002a4f3e4bp-1, -0x1.9fd043cff3f5fp-57}, {0x1.acfffd7ae1ed1p-1, -0x1.23ee7129070b4p-55}, {0x1.aefffee510478p-1, 0x1.a063ee00edea3p-57}, {0x1.b0fffdb650d5bp-1, 0x1.a06c8381f0ab9p-58}, {0x1.b2ffffeaaca57p-1, -0x1.9011e74233c1dp-56}, {0x1.b4fffd995badcp-1, -0x1.9ff1068862a9fp-56}, {0x1.b7000249e659cp-1, 0x1.aff45d0864f3ep-55}, {0x1.b8ffff987164p-1, 0x1.cfe7796c2c3f9p-56}, {0x1.bafffd204cb4fp-1, -0x1.3ff27eef22bc4p-57}, {0x1.bcfffd2415c45p-1, -0x1.cffb7ee3bea21p-57}, {0x1.beffff86309dfp-1, -0x1.14103972e0b5cp-55}, {0x1.c0fffe1b57653p-1, 0x1.bc16494b76a19p-55}, {0x1.c2ffff1fa57e3p-1, -0x1.4feef8d30c6edp-57}, {0x1.c4fffdcbfe424p-1, -0x1.43f68bcec4775p-55}, {0x1.c6fffed54b9f7p-1, 0x1.47ea3f053e0ecp-55}, {0x1.c8fffeb998fd5p-1, 0x1.383068df992f1p-56}, {0x1.cb0002125219ap-1, -0x1.8fd8e64180e04p-57}, {0x1.ccfffdd94469cp-1, 0x1.e7ebe1cc7ea72p-55}, {0x1.cefffeafdc476p-1, 0x1.ebe39ad9f88fep-55}, {0x1.d1000169af82bp-1, 0x1.57d91a8b95a71p-56}, {0x1.d30000d0ff71dp-1, 0x1.9c1906970c7dap-55}, {0x1.d4fffea790fc4p-1, -0x1.80e37c558fe0cp-58}, {0x1.d70002edc87e5p-1, -0x1.f80d64dc10f44p-56}, {0x1.d900021dc82aap-1, -0x1.47c8f94fd5c5cp-56}, {0x1.dafffd86b0283p-1, 0x1.c7f1dc521617ep-55}, {0x1.dd000296c4739p-1, 0x1.8019eb2ffb153p-55}, {0x1.defffe54490f5p-1, 0x1.e00d2c652cc89p-57}, {0x1.e0fffcdabf694p-1, -0x1.f8340202d69d2p-56}, {0x1.e2fffdb52c8ddp-1, 0x1.b00c1ca1b0864p-56}, {0x1.e4ffff24216efp-1, 0x1.2ffa8b094ab51p-56}, {0x1.e6fffe88a5e11p-1, -0x1.7f673b1efbe59p-58}, {0x1.e9000119eff0dp-1, -0x1.4808d5e0bc801p-55}, {0x1.eafffdfa51744p-1, 0x1.80006d54320b5p-56}, {0x1.ed0001a127fa1p-1, -0x1.002f860565c92p-58}, {0x1.ef00007babcc4p-1, -0x1.540445d35e611p-55}, {0x1.f0ffff57a8d02p-1, -0x1.ffb3139ef9105p-59}, {0x1.f30001ee58ac7p-1, 0x1.a81acf2731155p-55}, {0x1.f4ffff5823494p-1, 0x1.a3f41d4d7c743p-55}, {0x1.f6ffffca94c6bp-1, -0x1.202f41c987875p-57}, {0x1.f8fffe1f9c441p-1, 0x1.77dd1f477e74bp-56}, {0x1.fafffd2e0e37ep-1, -0x1.f01199a7ca331p-57}, {0x1.fd0001c77e49ep-1, 0x1.181ee4bceacb1p-56}, {0x1.feffff7e0c331p-1, -0x1.e05370170875ap-57}, {0x1.00ffff465606ep+0, -0x1.a7ead491c0adap-55}, {0x1.02ffff3867a58p+0, -0x1.77f69c3fcb2ep-54}, {0x1.04ffffdfc0d17p+0, 0x1.7bffe34cb945bp-54}, {0x1.0700003cd4d82p+0, 0x1.20083c0e456cbp-55}, {0x1.08ffff9f2cbe8p+0, -0x1.dffdfbe37751ap-57}, {0x1.0b000010cda65p+0, -0x1.13f7faee626ebp-54}, {0x1.0d00001a4d338p+0, 0x1.07dfa79489ff7p-55}, {0x1.0effffadafdfdp+0, -0x1.7040570d66bcp-56}, {0x1.110000bbafd96p+0, 0x1.e80d4846d0b62p-55}, {0x1.12ffffae5f45dp+0, 0x1.dbffa64fd36efp-54}, {0x1.150000dd59ad9p+0, 0x1.a0077701250aep-54}, {0x1.170000f21559ap+0, 0x1.dfdf9e2e3deeep-55}, {0x1.18ffffc275426p+0, 0x1.10030dc3b7273p-54}, {0x1.1b000123d3c59p+0, 0x1.97f7980030188p-54}, {0x1.1cffff8299eb7p+0, -0x1.5f932ab9f8c67p-57}, {0x1.1effff48ad4p+0, 0x1.37fbf9da75bebp-54}, {0x1.210000c8b86a4p+0, 0x1.f806b91fd5b22p-54}, {0x1.2300003854303p+0, 0x1.3ffc2eb9fbf33p-54}, {0x1.24fffffbcf684p+0, 0x1.601e77e2e2e72p-56}, {0x1.26ffff52921d9p+0, 0x1.ffcbb767f0c61p-56}, {0x1.2900014933a3cp+0, -0x1.202ca3c02412bp-56}, {0x1.2b00014556313p+0, -0x1.2808233f21f02p-54}, {0x1.2cfffebfe523bp+0, -0x1.8ff7e384fdcf2p-55}, {0x1.2f0000bb8ad96p+0, -0x1.5ff51503041c5p-55}, {0x1.30ffffb7ae2afp+0, -0x1.10071885e289dp-55}, {0x1.32ffffeac5f7fp+0, -0x1.1ff5d3fb7b715p-54}, {0x1.350000ca66756p+0, 0x1.57f82228b82bdp-54}, {0x1.3700011fbf721p+0, 0x1.000bac40dd5ccp-55}, {0x1.38ffff9592fb9p+0, -0x1.43f9d2db2a751p-54}, {0x1.3b00004ddd242p+0, 0x1.57f6b707638e1p-55}, {0x1.3cffff5b2c957p+0, 0x1.a023a10bf1231p-56}, {0x1.3efffeab0b418p+0, 0x1.87f6d66b152bp-54}, {0x1.410001532aff4p+0, 0x1.7f8375f198524p-57}, {0x1.4300017478b29p+0, 0x1.301e672dc5143p-55}, {0x1.44fffe795b463p+0, 0x1.9ff69b8b2895ap-55}, {0x1.46fffe80475ep+0, -0x1.5c0b19bc2f254p-54}, {0x1.48fffef6fc1e7p+0, 0x1.b4009f23a2a72p-54}, {0x1.4afffe5bea704p+0, -0x1.4ffb7bf0d7d45p-54}, {0x1.4d000171027dep+0, -0x1.9c06471dc6a3dp-54}, {0x1.4f0000ff03ee2p+0, 0x1.77f890b85531cp-54}, {0x1.5100012dc4bd1p+0, 0x1.004657166a436p-57}, {0x1.530001605277ap+0, -0x1.6bfcece233209p-54}, {0x1.54fffecdb704cp+0, -0x1.902720505a1d7p-55}, {0x1.56fffef5f54a9p+0, 0x1.bbfe60ec96412p-54}, {0x1.5900017e61012p+0, 0x1.87ec581afef9p-55}, {0x1.5b00003c93e92p+0, -0x1.f41080abf0ccp-54}, {0x1.5d0001d4919bcp+0, -0x1.8812afb254729p-54}, {0x1.5efffe7b87a89p+0, -0x1.47eb780ed6904p-54} }; double w, z, r, r2, r3, y, invc, logc, kd, hi, lo; UINT64 ix, iz, tmp; UINT32 top; int k, i; ix = *(UINT64*)&x; top = ix >> 48; if (ix - 0x3fee000000000000ULL < 0x3090000000000ULL) { double rhi, rlo; /* Handle close to 1.0 inputs separately. */ /* Fix sign of zero with downward rounding when x==1. */ if (ix == 0x3ff0000000000000ULL) return 0; r = x - 1.0; r2 = r * r; r3 = r * r2; y = r3 * (B[1] + r * B[2] + r2 * B[3] + r3 * (B[4] + r * B[5] + r2 * B[6] + r3 * (B[7] + r * B[8] + r2 * B[9] + r3 * B[10]))); /* Worst-case error is around 0.507 ULP. */ w = r * 0x1p27; rhi = r + w - w; rlo = r - rhi; w = rhi * rhi * B[0]; /* B[0] == -0.5. */ hi = r + w; lo = r - hi + w; lo += B[0] * rlo * (rhi + r); y += lo; y += hi; return y; } if (top - 0x0010 >= 0x7ff0 - 0x0010) { /* x < 0x1p-1022 or inf or nan. */ if (ix * 2 == 0) return (top & 0x8000 ? 1.0 : -1.0) / x; if (ix == 0x7ff0000000000000ULL) /* log(inf) == inf. */ return x; if ((top & 0x7ff0) == 0x7ff0 && (ix & 0xfffffffffffffULL)) return x; if (top & 0x8000) return (x - x) / (x - x); /* x is subnormal, normalize it. */ x *= 0x1p52; ix = *(UINT64*)&x; ix -= 52ULL << 52; } /* x = 2^k z; where z is in range [OFF,2*OFF) and exact. The range is split into N subintervals. The ith subinterval contains z and c is near its center. */ tmp = ix - 0x3fe6000000000000ULL; i = (tmp >> (52 - 7)) % (1 << 7); k = (INT64)tmp >> 52; /* arithmetic shift */ iz = ix - (tmp & 0xfffULL << 52); invc = T[i].invc; logc = T[i].logc; z = *(double*)&iz; /* log(x) = log1p(z/c-1) + log(c) + k*Ln2. */ /* r ~= z/c - 1, |r| < 1/(2*N). */ r = (z - T2[i].chi - T2[i].clo) * invc; kd = (double)k; /* hi + lo = r + log(c) + k*Ln2. */ w = kd * Ln2hi + logc; hi = w + r; lo = w - hi + r + kd * Ln2lo; /* log(x) = lo + (log1p(r) - r) + hi. */ r2 = r * r; /* rounding error: 0x1p-54/N^2. */ /* Worst case error if |y| > 0x1p-5: 0.5 + 4.13/N + abs-poly-error*2^57 ULP (+ 0.002 ULP without fma) Worst case error if |y| > 0x1p-4: 0.5 + 2.06/N + abs-poly-error*2^56 ULP (+ 0.001 ULP without fma). */ y = lo + r2 * A[0] + r * r2 * (A[1] + r * A[2] + r2 * (A[3] + r * A[4])) + hi; return y; } /********************************************************************* * pow (NTDLL.@) * * Copied from musl: src/math/pow.c */ double CDECL pow( double x, double y ) { UINT32 sign_bias = 0; UINT64 ix, iy; UINT32 topx, topy; double lo, hi, ehi, elo, yhi, ylo, lhi, llo; ix = *(UINT64*)&x; iy = *(UINT64*)&y; topx = ix >> 52; topy = iy >> 52; if (topx - 0x001 >= 0x7ff - 0x001 || (topy & 0x7ff) - 0x3be >= 0x43e - 0x3be) { /* Note: if |y| > 1075 * ln2 * 2^53 ~= 0x1.749p62 then pow(x,y) = inf/0 and if |y| < 2^-54 / 1075 ~= 0x1.e7b6p-65 then pow(x,y) = +-1. */ /* Special cases: (x < 0x1p-126 or inf or nan) or (|y| < 0x1p-65 or |y| >= 0x1p63 or nan). */ if (2 * iy - 1 >= 2 * 0x7ff0000000000000ULL - 1) { if (2 * iy == 0) return 1.0; if (ix == 0x3ff0000000000000ULL) return 1.0; if (2 * ix > 2 * 0x7ff0000000000000ULL || 2 * iy > 2 * 0x7ff0000000000000ULL) return x + y; if (2 * ix == 2 * 0x3ff0000000000000ULL) return 1.0; if ((2 * ix < 2 * 0x3ff0000000000000ULL) == !(iy >> 63)) return 0.0; /* |x|<1 && y==inf or |x|>1 && y==-inf. */ return y * y; } if (2 * ix - 1 >= 2 * 0x7ff0000000000000ULL - 1) { double x2 = x * x; if (ix >> 63 && pow_checkint(iy) == 1) x2 = -x2; if (iy & 0x8000000000000000ULL && x2 == 0.0) return 1 / x2; /* Without the barrier some versions of clang hoist the 1/x2 and thus division by zero exception can be signaled spuriously. */ return iy >> 63 ? fp_barrier(1 / x2) : x2; } /* Here x and y are non-zero finite. */ if (ix >> 63) { /* Finite x < 0. */ int yint = pow_checkint(iy); if (yint == 0) return 0 / (x - x); if (yint == 1) sign_bias = 0x800 << 7; ix &= 0x7fffffffffffffff; topx &= 0x7ff; } if ((topy & 0x7ff) - 0x3be >= 0x43e - 0x3be) { /* Note: sign_bias == 0 here because y is not odd. */ if (ix == 0x3ff0000000000000ULL) return 1.0; if ((topy & 0x7ff) < 0x3be) { /* |y| < 2^-65, x^y ~= 1 + y*log(x). */ return ix > 0x3ff0000000000000ULL ? 1.0 + y : 1.0 - y; } if ((ix > 0x3ff0000000000000ULL) == (topy < 0x800)) return fp_barrier(DBL_MAX) * DBL_MAX; return fp_barrier(DBL_MIN) * DBL_MIN; } if (topx == 0) { /* Normalize subnormal x so exponent becomes negative. */ x *= 0x1p52; ix = *(UINT64*)&x; ix &= 0x7fffffffffffffff; ix -= 52ULL << 52; } } hi = pow_log(ix, &lo); iy &= -1ULL << 27; yhi = *(double*)&iy; ylo = y - yhi; *(UINT64*)&lhi = *(UINT64*)&hi & -1ULL << 27; llo = fp_barrier(hi - lhi + lo); ehi = yhi * lhi; elo = ylo * lhi + y * llo; /* |elo| < |ehi| * 2^-25. */ return pow_exp(x, y, ehi, elo, sign_bias); } /********************************************************************* * sin (NTDLL.@) * * Copied from musl: src/math/sin.c */ double CDECL sin( double x ) { double y[2]; UINT32 ix; unsigned n; ix = *(ULONGLONG*)&x >> 32; ix &= 0x7fffffff; /* |x| ~< pi/4 */ if (ix <= 0x3fe921fb) { if (ix < 0x3e500000) { /* |x| < 2**-26 */ /* raise inexact if x != 0 and underflow if subnormal*/ fp_barrier(ix < 0x00100000 ? x/0x1p120f : x+0x1p120f); return x; } return __sin(x, 0.0, 0); } /* sin(Inf or NaN) is NaN */ if (isinf(x)) return x - x; if (ix >= 0x7ff00000) return x - x; /* argument reduction needed */ n = __rem_pio2(x, y); switch (n&3) { case 0: return __sin(y[0], y[1], 1); case 1: return __cos(y[0], y[1]); case 2: return -__sin(y[0], y[1], 1); default: return -__cos(y[0], y[1]); } } /********************************************************************* * sqrt (NTDLL.@) * * Copied from musl: src/math/sqrt.c */ double CDECL sqrt( double x ) { static const double tiny = 1.0e-300; double z; int sign = 0x80000000; int ix0,s0,q,m,t,i; unsigned int r,t1,s1,ix1,q1; ULONGLONG ix; if (!sqrt_validate(&x, TRUE)) return x; ix = *(ULONGLONG*)&x; ix0 = ix >> 32; ix1 = ix; /* normalize x */ m = ix0 >> 20; if (m == 0) { /* subnormal x */ while (ix0 == 0) { m -= 21; ix0 |= (ix1 >> 11); ix1 <<= 21; } for (i=0; (ix0 & 0x00100000) == 0; i++) ix0 <<= 1; m -= i - 1; ix0 |= ix1 >> (32 - i); ix1 <<= i; } m -= 1023; /* unbias exponent */ ix0 = (ix0 & 0x000fffff) | 0x00100000; if (m & 1) { /* odd m, double x to make it even */ ix0 += ix0 + ((ix1 & sign) >> 31); ix1 += ix1; } m >>= 1; /* m = [m/2] */ /* generate sqrt(x) bit by bit */ ix0 += ix0 + ((ix1 & sign) >> 31); ix1 += ix1; q = q1 = s0 = s1 = 0; /* [q,q1] = sqrt(x) */ r = 0x00200000; /* r = moving bit from right to left */ while (r != 0) { t = s0 + r; if (t <= ix0) { s0 = t + r; ix0 -= t; q += r; } ix0 += ix0 + ((ix1 & sign) >> 31); ix1 += ix1; r >>= 1; } r = sign; while (r != 0) { t1 = s1 + r; t = s0; if (t < ix0 || (t == ix0 && t1 <= ix1)) { s1 = t1 + r; if ((t1&sign) == sign && (s1 & sign) == 0) s0++; ix0 -= t; if (ix1 < t1) ix0--; ix1 -= t1; q1 += r; } ix0 += ix0 + ((ix1 & sign) >> 31); ix1 += ix1; r >>= 1; } /* use floating add to find out rounding direction */ if ((ix0 | ix1) != 0) { z = 1.0 - tiny; /* raise inexact flag */ if (z >= 1.0) { z = 1.0 + tiny; if (q1 == (unsigned int)0xffffffff) { q1 = 0; q++; } else if (z > 1.0) { if (q1 == (unsigned int)0xfffffffe) q++; q1 += 2; } else q1 += q1 & 1; } } ix0 = (q >> 1) + 0x3fe00000; ix1 = q1 >> 1; if (q & 1) ix1 |= sign; ix = ix0 + ((unsigned int)m << 20); ix <<= 32; ix |= ix1; return *(double*)&ix; } /********************************************************************* * tan (NTDLL.@) * * Copied from musl: src/math/tan.c */ double CDECL tan( double x ) { double y[2]; UINT32 ix; unsigned n; ix = *(ULONGLONG*)&x >> 32; ix &= 0x7fffffff; if (ix <= 0x3fe921fb) { /* |x| ~< pi/4 */ if (ix < 0x3e400000) { /* |x| < 2**-27 */ /* raise inexact if x!=0 and underflow if subnormal */ fp_barrier(ix < 0x00100000 ? x / 0x1p120f : x + 0x1p120f); return x; } return __tan(x, 0.0, 0); } if (isinf(x)) return x - x; if (ix >= 0x7ff00000) return x - x; n = __rem_pio2(x, y); return __tan(y[0], y[1], n & 1); } #if (defined(__GNUC__) || defined(__clang__)) && defined(__i386__) #define FPU_DOUBLE(var) double var; \ __asm__ __volatile__( "fstpl %0;fwait" : "=m" (var) : ) #define FPU_DOUBLES(var1,var2) double var1,var2; \ __asm__ __volatile__( "fstpl %0;fwait" : "=m" (var2) : ); \ __asm__ __volatile__( "fstpl %0;fwait" : "=m" (var1) : ) /********************************************************************* * _CIcos (NTDLL.@) */ double CDECL _CIcos(void) { FPU_DOUBLE(x); return cos(x); } /********************************************************************* * _CIlog (NTDLL.@) */ double CDECL _CIlog(void) { FPU_DOUBLE(x); return log(x); } /********************************************************************* * _CIpow (NTDLL.@) */ double CDECL _CIpow(void) { FPU_DOUBLES(x,y); return pow(x,y); } /********************************************************************* * _CIsin (NTDLL.@) */ double CDECL _CIsin(void) { FPU_DOUBLE(x); return sin(x); } /********************************************************************* * _CIsqrt (NTDLL.@) */ double CDECL _CIsqrt(void) { FPU_DOUBLE(x); return sqrt(x); } /********************************************************************* * _ftol (NTDLL.@) */ LONGLONG CDECL _ftol(void) { FPU_DOUBLE(x); return (LONGLONG)x; } #endif /* (defined(__GNUC__) || defined(__clang__)) && defined(__i386__) */