/* * File Decompression Interface * * Copyright 2000-2002 Stuart Caie * Copyright 2002 Patrik Stridvall * Copyright 2003 Greg Turner * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA * * * This is a largely redundant reimplementation of the stuff in cabextract.c. It * would be theoretically preferable to have only one, shared implementation, however * there are semantic differences which may discourage efforts to unify the two. It * should be possible, if awkward, to go back and reimplement cabextract.c using FDI. * But this approach would be quite a bit less performant. Probably a better way * would be to create a "library" of routines in cabextract.c which do the actual * decompression, and have both fdi.c and cabextract share those routines. The rest * of the code is not sufficiently similar to merit a shared implementation. * * The worst thing about this API is the bug. "The bug" is this: when you extract a * cabinet, it /always/ informs you (via the hasnext field of PFDICABINETINFO), that * there is no subsequent cabinet, even if there is one. wine faithfully reproduces * this behavior. * * TODO: * * Wine does not implement the AFAIK undocumented "enumerate" callback during * FDICopy. It is implemented in Windows and therefore worth investigating... * * Lots of pointers flying around here... am I leaking RAM? * * WTF is FDITruncate? * * Probably, I need to weed out some dead code-paths. * * Test unit(s). * * The fdintNEXT_CABINET callbacks are probably not working quite as they should. * There are several FIXME's in the source describing some of the deficiencies in * some detail. Additionally, we do not do a very good job of returning the right * error codes to this callback. * * FDICopy and fdi_decomp are incomprehensibly large; separating these into smaller * functions would be nice. * * -gmt */ #include "config.h" #include <stdarg.h> #include <stdio.h> #include "windef.h" #include "winbase.h" #include "winerror.h" #include "fdi.h" #include "cabinet.h" #include "wine/debug.h" WINE_DEFAULT_DEBUG_CHANNEL(cabinet); THOSE_ZIP_CONSTS; struct fdi_file { struct fdi_file *next; /* next file in sequence */ LPCSTR filename; /* output name of file */ int fh; /* open file handle or NULL */ cab_ULONG length; /* uncompressed length of file */ cab_ULONG offset; /* uncompressed offset in folder */ cab_UWORD index; /* magic index number of folder */ cab_UWORD time, date, attribs; /* MS-DOS time/date/attributes */ BOOL oppressed; /* never to be processed */ }; struct fdi_folder { struct fdi_folder *next; cab_off_t offset; /* offset to data blocks (32 bit) */ cab_UWORD comp_type; /* compression format/window size */ cab_ULONG comp_size; /* compressed size of folder */ cab_UBYTE num_splits; /* number of split blocks + 1 */ cab_UWORD num_blocks; /* total number of blocks */ }; /* * this structure fills the gaps between what is available in a PFDICABINETINFO * vs what is needed by FDICopy. Memory allocated for these becomes the responsibility * of the caller to free. Yes, I am aware that this is totally, utterly inelegant. * To make things even more unnecessarily confusing, we now attach these to the * fdi_decomp_state. */ typedef struct { char *prevname, *previnfo; char *nextname, *nextinfo; BOOL hasnext; /* bug free indicator */ int folder_resv, header_resv; cab_UBYTE block_resv; } MORE_ISCAB_INFO, *PMORE_ISCAB_INFO; /* * ugh, well, this ended up being pretty damn silly... * now that I've conceded to build equivalent structures to struct cab.*, * I should have just used those, or, better yet, unified the two... sue me. * (Note to Microsoft: That's a joke. Please /don't/ actually sue me! -gmt). * Nevertheless, I've come this far, it works, so I'm not gonna change it * for now. This implementation has significant semantic differences anyhow. */ typedef struct fdi_cds_fwd { void *hfdi; /* the hfdi we are using */ INT_PTR filehf, cabhf; /* file handle we are using */ struct fdi_folder *current; /* current folder we're extracting from */ cab_ULONG offset; /* uncompressed offset within folder */ cab_UBYTE *outpos; /* (high level) start of data to use up */ cab_UWORD outlen; /* (high level) amount of data to use up */ int (*decompress)(int, int, struct fdi_cds_fwd *); /* chosen compress fn */ cab_UBYTE inbuf[CAB_INPUTMAX+2]; /* +2 for lzx bitbuffer overflows! */ cab_UBYTE outbuf[CAB_BLOCKMAX]; union { struct ZIPstate zip; struct QTMstate qtm; struct LZXstate lzx; } methods; /* some temp variables for use during decompression */ cab_UBYTE q_length_base[27], q_length_extra[27], q_extra_bits[42]; cab_ULONG q_position_base[42]; cab_ULONG lzx_position_base[51]; cab_UBYTE extra_bits[51]; USHORT setID; /* Cabinet set ID */ USHORT iCabinet; /* Cabinet number in set (0 based) */ struct fdi_cds_fwd *decomp_cab; MORE_ISCAB_INFO mii; struct fdi_folder *firstfol; struct fdi_file *firstfile; struct fdi_cds_fwd *next; } fdi_decomp_state; /**************************************************************** * QTMupdatemodel (internal) */ static void QTMupdatemodel(struct QTMmodel *model, int sym) { struct QTMmodelsym temp; int i, j; for (i = 0; i < sym; i++) model->syms[i].cumfreq += 8; if (model->syms[0].cumfreq > 3800) { if (--model->shiftsleft) { for (i = model->entries - 1; i >= 0; i--) { /* -1, not -2; the 0 entry saves this */ model->syms[i].cumfreq >>= 1; if (model->syms[i].cumfreq <= model->syms[i+1].cumfreq) { model->syms[i].cumfreq = model->syms[i+1].cumfreq + 1; } } } else { model->shiftsleft = 50; for (i = 0; i < model->entries ; i++) { /* no -1, want to include the 0 entry */ /* this converts cumfreqs into frequencies, then shifts right */ model->syms[i].cumfreq -= model->syms[i+1].cumfreq; model->syms[i].cumfreq++; /* avoid losing things entirely */ model->syms[i].cumfreq >>= 1; } /* now sort by frequencies, decreasing order -- this must be an * inplace selection sort, or a sort with the same (in)stability * characteristics */ for (i = 0; i < model->entries - 1; i++) { for (j = i + 1; j < model->entries; j++) { if (model->syms[i].cumfreq < model->syms[j].cumfreq) { temp = model->syms[i]; model->syms[i] = model->syms[j]; model->syms[j] = temp; } } } /* then convert frequencies back to cumfreq */ for (i = model->entries - 1; i >= 0; i--) { model->syms[i].cumfreq += model->syms[i+1].cumfreq; } /* then update the other part of the table */ for (i = 0; i < model->entries; i++) { model->tabloc[model->syms[i].sym] = i; } } } } /************************************************************************* * make_decode_table (internal) * * This function was coded by David Tritscher. It builds a fast huffman * decoding table out of just a canonical huffman code lengths table. * * PARAMS * nsyms: total number of symbols in this huffman tree. * nbits: any symbols with a code length of nbits or less can be decoded * in one lookup of the table. * length: A table to get code lengths from [0 to syms-1] * table: The table to fill up with decoded symbols and pointers. * * RETURNS * OK: 0 * error: 1 */ static int make_decode_table(cab_ULONG nsyms, cab_ULONG nbits, const cab_UBYTE *length, cab_UWORD *table) { register cab_UWORD sym; register cab_ULONG leaf; register cab_UBYTE bit_num = 1; cab_ULONG fill; cab_ULONG pos = 0; /* the current position in the decode table */ cab_ULONG table_mask = 1 << nbits; cab_ULONG bit_mask = table_mask >> 1; /* don't do 0 length codes */ cab_ULONG next_symbol = bit_mask; /* base of allocation for long codes */ /* fill entries for codes short enough for a direct mapping */ while (bit_num <= nbits) { for (sym = 0; sym < nsyms; sym++) { if (length[sym] == bit_num) { leaf = pos; if((pos += bit_mask) > table_mask) return 1; /* table overrun */ /* fill all possible lookups of this symbol with the symbol itself */ fill = bit_mask; while (fill-- > 0) table[leaf++] = sym; } } bit_mask >>= 1; bit_num++; } /* if there are any codes longer than nbits */ if (pos != table_mask) { /* clear the remainder of the table */ for (sym = pos; sym < table_mask; sym++) table[sym] = 0; /* give ourselves room for codes to grow by up to 16 more bits */ pos <<= 16; table_mask <<= 16; bit_mask = 1 << 15; while (bit_num <= 16) { for (sym = 0; sym < nsyms; sym++) { if (length[sym] == bit_num) { leaf = pos >> 16; for (fill = 0; fill < bit_num - nbits; fill++) { /* if this path hasn't been taken yet, 'allocate' two entries */ if (table[leaf] == 0) { table[(next_symbol << 1)] = 0; table[(next_symbol << 1) + 1] = 0; table[leaf] = next_symbol++; } /* follow the path and select either left or right for next bit */ leaf = table[leaf] << 1; if ((pos >> (15-fill)) & 1) leaf++; } table[leaf] = sym; if ((pos += bit_mask) > table_mask) return 1; /* table overflow */ } } bit_mask >>= 1; bit_num++; } } /* full table? */ if (pos == table_mask) return 0; /* either erroneous table, or all elements are 0 - let's find out. */ for (sym = 0; sym < nsyms; sym++) if (length[sym]) return 1; return 0; } /************************************************************************* * checksum (internal) */ static cab_ULONG checksum(const cab_UBYTE *data, cab_UWORD bytes, cab_ULONG csum) { int len; cab_ULONG ul = 0; for (len = bytes >> 2; len--; data += 4) { csum ^= ((data[0]) | (data[1]<<8) | (data[2]<<16) | (data[3]<<24)); } switch (bytes & 3) { case 3: ul |= *data++ << 16; case 2: ul |= *data++ << 8; case 1: ul |= *data; } csum ^= ul; return csum; } /*********************************************************************** * FDICreate (CABINET.20) * * Provided with several callbacks (all of them are mandatory), * returns a handle which can be used to perform operations * on cabinet files. * * PARAMS * pfnalloc [I] A pointer to a function which allocates ram. Uses * the same interface as malloc. * pfnfree [I] A pointer to a function which frees ram. Uses the * same interface as free. * pfnopen [I] A pointer to a function which opens a file. Uses * the same interface as _open. * pfnread [I] A pointer to a function which reads from a file into * a caller-provided buffer. Uses the same interface * as _read * pfnwrite [I] A pointer to a function which writes to a file from * a caller-provided buffer. Uses the same interface * as _write. * pfnclose [I] A pointer to a function which closes a file handle. * Uses the same interface as _close. * pfnseek [I] A pointer to a function which seeks in a file. * Uses the same interface as _lseek. * cpuType [I] The type of CPU; ignored in wine (recommended value: * cpuUNKNOWN, aka -1). * perf [IO] A pointer to an ERF structure. When FDICreate * returns an error condition, error information may * be found here as well as from GetLastError. * * RETURNS * On success, returns an FDI handle of type HFDI. * On failure, the NULL file handle is returned. Error * info can be retrieved from perf. * * INCLUDES * fdi.h * */ HFDI __cdecl FDICreate( PFNALLOC pfnalloc, PFNFREE pfnfree, PFNOPEN pfnopen, PFNREAD pfnread, PFNWRITE pfnwrite, PFNCLOSE pfnclose, PFNSEEK pfnseek, int cpuType, PERF perf) { HFDI rv; TRACE("(pfnalloc == ^%p, pfnfree == ^%p, pfnopen == ^%p, pfnread == ^%p, pfnwrite == ^%p, " "pfnclose == ^%p, pfnseek == ^%p, cpuType == %d, perf == ^%p)\n", pfnalloc, pfnfree, pfnopen, pfnread, pfnwrite, pfnclose, pfnseek, cpuType, perf); if ((!pfnalloc) || (!pfnfree)) { perf->erfOper = FDIERROR_NONE; perf->erfType = ERROR_BAD_ARGUMENTS; perf->fError = TRUE; SetLastError(ERROR_BAD_ARGUMENTS); return NULL; } if (!((rv = (*pfnalloc)(sizeof(FDI_Int))))) { perf->erfOper = FDIERROR_ALLOC_FAIL; perf->erfType = ERROR_NOT_ENOUGH_MEMORY; perf->fError = TRUE; SetLastError(ERROR_NOT_ENOUGH_MEMORY); return NULL; } PFDI_INT(rv)->FDI_Intmagic = FDI_INT_MAGIC; PFDI_INT(rv)->pfnalloc = pfnalloc; PFDI_INT(rv)->pfnfree = pfnfree; PFDI_INT(rv)->pfnopen = pfnopen; PFDI_INT(rv)->pfnread = pfnread; PFDI_INT(rv)->pfnwrite = pfnwrite; PFDI_INT(rv)->pfnclose = pfnclose; PFDI_INT(rv)->pfnseek = pfnseek; /* no-brainer: we ignore the cpu type; this is only used for the 16-bit versions in Windows anyhow... */ PFDI_INT(rv)->perf = perf; return rv; } /******************************************************************* * FDI_getoffset (internal) * * returns the file pointer position of a file handle. */ static long FDI_getoffset(HFDI hfdi, INT_PTR hf) { return PFDI_SEEK(hfdi, hf, 0L, SEEK_CUR); } /********************************************************************** * FDI_read_string (internal) * * allocate and read an arbitrarily long string from the cabinet */ static char *FDI_read_string(HFDI hfdi, INT_PTR hf, long cabsize) { size_t len=256, base = FDI_getoffset(hfdi, hf), maxlen = cabsize - base; BOOL ok = FALSE; unsigned int i; cab_UBYTE *buf = NULL; TRACE("(hfdi == ^%p, hf == %ld, cabsize == %ld)\n", hfdi, hf, cabsize); do { if (len > maxlen) len = maxlen; if (!(buf = PFDI_ALLOC(hfdi, len))) break; if (!PFDI_READ(hfdi, hf, buf, len)) break; /* search for a null terminator in what we've just read */ for (i=0; i < len; i++) { if (!buf[i]) {ok=TRUE; break;} } if (!ok) { if (len == maxlen) { ERR("cabinet is truncated\n"); break; } /* The buffer is too small for the string. Reset the file to the point * were we started, free the buffer and increase the size for the next try */ PFDI_SEEK(hfdi, hf, base, SEEK_SET); PFDI_FREE(hfdi, buf); buf = NULL; len *= 2; } } while (!ok); if (!ok) { if (buf) PFDI_FREE(hfdi, buf); else ERR("out of memory!\n"); return NULL; } /* otherwise, set the stream to just after the string and return */ PFDI_SEEK(hfdi, hf, base + strlen((char *)buf) + 1, SEEK_SET); return (char *) buf; } /****************************************************************** * FDI_read_entries (internal) * * process the cabinet header in the style of FDIIsCabinet, but * without the sanity checks (and bug) */ static BOOL FDI_read_entries( HFDI hfdi, INT_PTR hf, PFDICABINETINFO pfdici, PMORE_ISCAB_INFO pmii) { int num_folders, num_files, header_resv, folder_resv = 0; LONG base_offset, cabsize; USHORT setid, cabidx, flags; cab_UBYTE buf[64], block_resv; char *prevname = NULL, *previnfo = NULL, *nextname = NULL, *nextinfo = NULL; TRACE("(hfdi == ^%p, hf == %ld, pfdici == ^%p)\n", hfdi, hf, pfdici); /* * FIXME: I just noticed that I am memorizing the initial file pointer * offset and restoring it before reading in the rest of the header * information in the cabinet. Perhaps that's correct -- that is, perhaps * this API is supposed to support "streaming" cabinets which are embedded * in other files, or cabinets which begin at file offsets other than zero. * Otherwise, I should instead go to the absolute beginning of the file. * (Either way, the semantics of wine's FDICopy require me to leave the * file pointer where it is afterwards -- If Windows does not do so, we * ought to duplicate the native behavior in the FDIIsCabinet API, not here. * * So, the answer lies in Windows; will native cabinet.dll recognize a * cabinet "file" embedded in another file? Note that cabextract.c does * support this, which implies that Microsoft's might. I haven't tried it * yet so I don't know. ATM, most of wine's FDI cabinet routines (except * this one) would not work in this way. To fix it, we could just make the * various references to absolute file positions in the code relative to an * initial "beginning" offset. Because the FDICopy API doesn't take a * file-handle like this one, we would therein need to search through the * file for the beginning of the cabinet (as we also do in cabextract.c). * Note that this limits us to a maximum of one cabinet per. file: the first. * * So, in summary: either the code below is wrong, or the rest of fdi.c is * wrong... I cannot imagine that both are correct ;) One of these flaws * should be fixed after determining the behavior on Windows. We ought * to check both FDIIsCabinet and FDICopy for the right behavior. * * -gmt */ /* get basic offset & size info */ base_offset = FDI_getoffset(hfdi, hf); if (PFDI_SEEK(hfdi, hf, 0, SEEK_END) == -1) { if (pmii) { PFDI_INT(hfdi)->perf->erfOper = FDIERROR_NOT_A_CABINET; PFDI_INT(hfdi)->perf->erfType = 0; PFDI_INT(hfdi)->perf->fError = TRUE; } return FALSE; } cabsize = FDI_getoffset(hfdi, hf); if ((cabsize == -1) || (base_offset == -1) || ( PFDI_SEEK(hfdi, hf, base_offset, SEEK_SET) == -1 )) { if (pmii) { PFDI_INT(hfdi)->perf->erfOper = FDIERROR_NOT_A_CABINET; PFDI_INT(hfdi)->perf->erfType = 0; PFDI_INT(hfdi)->perf->fError = TRUE; } return FALSE; } /* read in the CFHEADER */ if (PFDI_READ(hfdi, hf, buf, cfhead_SIZEOF) != cfhead_SIZEOF) { if (pmii) { PFDI_INT(hfdi)->perf->erfOper = FDIERROR_NOT_A_CABINET; PFDI_INT(hfdi)->perf->erfType = 0; PFDI_INT(hfdi)->perf->fError = TRUE; } return FALSE; } /* check basic MSCF signature */ if (EndGetI32(buf+cfhead_Signature) != 0x4643534d) { if (pmii) { PFDI_INT(hfdi)->perf->erfOper = FDIERROR_NOT_A_CABINET; PFDI_INT(hfdi)->perf->erfType = 0; PFDI_INT(hfdi)->perf->fError = TRUE; } return FALSE; } /* get the number of folders */ num_folders = EndGetI16(buf+cfhead_NumFolders); if (num_folders == 0) { /* PONDERME: is this really invalid? */ WARN("weird cabinet detect failure: no folders in cabinet\n"); if (pmii) { PFDI_INT(hfdi)->perf->erfOper = FDIERROR_NOT_A_CABINET; PFDI_INT(hfdi)->perf->erfType = 0; PFDI_INT(hfdi)->perf->fError = TRUE; } return FALSE; } /* get the number of files */ num_files = EndGetI16(buf+cfhead_NumFiles); if (num_files == 0) { /* PONDERME: is this really invalid? */ WARN("weird cabinet detect failure: no files in cabinet\n"); if (pmii) { PFDI_INT(hfdi)->perf->erfOper = FDIERROR_NOT_A_CABINET; PFDI_INT(hfdi)->perf->erfType = 0; PFDI_INT(hfdi)->perf->fError = TRUE; } return FALSE; } /* setid */ setid = EndGetI16(buf+cfhead_SetID); /* cabinet (set) index */ cabidx = EndGetI16(buf+cfhead_CabinetIndex); /* check the header revision */ if ((buf[cfhead_MajorVersion] > 1) || (buf[cfhead_MajorVersion] == 1 && buf[cfhead_MinorVersion] > 3)) { WARN("cabinet format version > 1.3\n"); if (pmii) { PFDI_INT(hfdi)->perf->erfOper = FDIERROR_UNKNOWN_CABINET_VERSION; PFDI_INT(hfdi)->perf->erfType = 0; /* ? */ PFDI_INT(hfdi)->perf->fError = TRUE; } return FALSE; } /* pull the flags out */ flags = EndGetI16(buf+cfhead_Flags); /* read the reserved-sizes part of header, if present */ if (flags & cfheadRESERVE_PRESENT) { if (PFDI_READ(hfdi, hf, buf, cfheadext_SIZEOF) != cfheadext_SIZEOF) { ERR("bunk reserve-sizes?\n"); if (pmii) { PFDI_INT(hfdi)->perf->erfOper = FDIERROR_CORRUPT_CABINET; PFDI_INT(hfdi)->perf->erfType = 0; /* ? */ PFDI_INT(hfdi)->perf->fError = TRUE; } return FALSE; } header_resv = EndGetI16(buf+cfheadext_HeaderReserved); if (pmii) pmii->header_resv = header_resv; folder_resv = buf[cfheadext_FolderReserved]; if (pmii) pmii->folder_resv = folder_resv; block_resv = buf[cfheadext_DataReserved]; if (pmii) pmii->block_resv = block_resv; if (header_resv > 60000) { WARN("WARNING; header reserved space > 60000\n"); } /* skip the reserved header */ if ((header_resv) && (PFDI_SEEK(hfdi, hf, header_resv, SEEK_CUR) == -1)) { ERR("seek failure: header_resv\n"); if (pmii) { PFDI_INT(hfdi)->perf->erfOper = FDIERROR_CORRUPT_CABINET; PFDI_INT(hfdi)->perf->erfType = 0; /* ? */ PFDI_INT(hfdi)->perf->fError = TRUE; } return FALSE; } } if (flags & cfheadPREV_CABINET) { prevname = FDI_read_string(hfdi, hf, cabsize); if (!prevname) { if (pmii) { PFDI_INT(hfdi)->perf->erfOper = FDIERROR_CORRUPT_CABINET; PFDI_INT(hfdi)->perf->erfType = 0; /* ? */ PFDI_INT(hfdi)->perf->fError = TRUE; } return FALSE; } else if (pmii) pmii->prevname = prevname; else PFDI_FREE(hfdi, prevname); previnfo = FDI_read_string(hfdi, hf, cabsize); if (previnfo) { if (pmii) pmii->previnfo = previnfo; else PFDI_FREE(hfdi, previnfo); } } if (flags & cfheadNEXT_CABINET) { if (pmii) pmii->hasnext = TRUE; nextname = FDI_read_string(hfdi, hf, cabsize); if (!nextname) { if ((flags & cfheadPREV_CABINET) && pmii) { if (pmii->prevname) PFDI_FREE(hfdi, prevname); if (pmii->previnfo) PFDI_FREE(hfdi, previnfo); } PFDI_INT(hfdi)->perf->erfOper = FDIERROR_CORRUPT_CABINET; PFDI_INT(hfdi)->perf->erfType = 0; /* ? */ PFDI_INT(hfdi)->perf->fError = TRUE; return FALSE; } else if (pmii) pmii->nextname = nextname; else PFDI_FREE(hfdi, nextname); nextinfo = FDI_read_string(hfdi, hf, cabsize); if (nextinfo) { if (pmii) pmii->nextinfo = nextinfo; else PFDI_FREE(hfdi, nextinfo); } } /* we could process the whole cabinet searching for problems; instead lets stop here. Now let's fill out the paperwork */ pfdici->cbCabinet = cabsize; pfdici->cFolders = num_folders; pfdici->cFiles = num_files; pfdici->setID = setid; pfdici->iCabinet = cabidx; pfdici->fReserve = (flags & cfheadRESERVE_PRESENT) ? TRUE : FALSE; pfdici->hasprev = (flags & cfheadPREV_CABINET) ? TRUE : FALSE; pfdici->hasnext = (flags & cfheadNEXT_CABINET) ? TRUE : FALSE; return TRUE; } /*********************************************************************** * FDIIsCabinet (CABINET.21) * * Informs the caller as to whether or not the provided file handle is * really a cabinet or not, filling out the provided PFDICABINETINFO * structure with information about the cabinet. Brief explanations of * the elements of this structure are available as comments accompanying * its definition in wine's include/fdi.h. * * PARAMS * hfdi [I] An HFDI from FDICreate * hf [I] The file handle about which the caller inquires * pfdici [IO] Pointer to a PFDICABINETINFO structure which will * be filled out with information about the cabinet * file indicated by hf if, indeed, it is determined * to be a cabinet. * * RETURNS * TRUE if the file is a cabinet. The info pointed to by pfdici will * be provided. * FALSE if the file is not a cabinet, or if an error was encountered * while processing the cabinet. The PERF structure provided to * FDICreate can be queried for more error information. * * INCLUDES * fdi.c */ BOOL __cdecl FDIIsCabinet( HFDI hfdi, INT_PTR hf, PFDICABINETINFO pfdici) { BOOL rv; TRACE("(hfdi == ^%p, hf == ^%ld, pfdici == ^%p)\n", hfdi, hf, pfdici); if (!REALLY_IS_FDI(hfdi)) { ERR("REALLY_IS_FDI failed on ^%p\n", hfdi); SetLastError(ERROR_INVALID_HANDLE); return FALSE; } if (!hf) { ERR("(!hf)!\n"); /* PFDI_INT(hfdi)->perf->erfOper = FDIERROR_CABINET_NOT_FOUND; PFDI_INT(hfdi)->perf->erfType = ERROR_INVALID_HANDLE; PFDI_INT(hfdi)->perf->fError = TRUE; */ SetLastError(ERROR_INVALID_HANDLE); return FALSE; } if (!pfdici) { ERR("(!pfdici)!\n"); /* PFDI_INT(hfdi)->perf->erfOper = FDIERROR_NONE; PFDI_INT(hfdi)->perf->erfType = ERROR_BAD_ARGUMENTS; PFDI_INT(hfdi)->perf->fError = TRUE; */ SetLastError(ERROR_BAD_ARGUMENTS); return FALSE; } rv = FDI_read_entries(hfdi, hf, pfdici, NULL); if (rv) pfdici->hasnext = FALSE; /* yuck. duplicate apparent cabinet.dll bug */ return rv; } /****************************************************************** * QTMfdi_initmodel (internal) * * Initialize a model which decodes symbols from [s] to [s]+[n]-1 */ static void QTMfdi_initmodel(struct QTMmodel *m, struct QTMmodelsym *sym, int n, int s) { int i; m->shiftsleft = 4; m->entries = n; m->syms = sym; memset(m->tabloc, 0xFF, sizeof(m->tabloc)); /* clear out look-up table */ for (i = 0; i < n; i++) { m->tabloc[i+s] = i; /* set up a look-up entry for symbol */ m->syms[i].sym = i+s; /* actual symbol */ m->syms[i].cumfreq = n-i; /* current frequency of that symbol */ } m->syms[n].cumfreq = 0; } /****************************************************************** * QTMfdi_init (internal) */ static int QTMfdi_init(int window, int level, fdi_decomp_state *decomp_state) { unsigned int wndsize = 1 << window; int msz = window * 2, i; cab_ULONG j; /* QTM supports window sizes of 2^10 (1Kb) through 2^21 (2Mb) */ /* if a previously allocated window is big enough, keep it */ if (window < 10 || window > 21) return DECR_DATAFORMAT; if (QTM(actual_size) < wndsize) { if (QTM(window)) PFDI_FREE(CAB(hfdi), QTM(window)); QTM(window) = NULL; } if (!QTM(window)) { if (!(QTM(window) = PFDI_ALLOC(CAB(hfdi), wndsize))) return DECR_NOMEMORY; QTM(actual_size) = wndsize; } QTM(window_size) = wndsize; QTM(window_posn) = 0; /* initialize static slot/extrabits tables */ for (i = 0, j = 0; i < 27; i++) { CAB(q_length_extra)[i] = (i == 26) ? 0 : (i < 2 ? 0 : i - 2) >> 2; CAB(q_length_base)[i] = j; j += 1 << ((i == 26) ? 5 : CAB(q_length_extra)[i]); } for (i = 0, j = 0; i < 42; i++) { CAB(q_extra_bits)[i] = (i < 2 ? 0 : i-2) >> 1; CAB(q_position_base)[i] = j; j += 1 << CAB(q_extra_bits)[i]; } /* initialize arithmetic coding models */ QTMfdi_initmodel(&QTM(model7), &QTM(m7sym)[0], 7, 0); QTMfdi_initmodel(&QTM(model00), &QTM(m00sym)[0], 0x40, 0x00); QTMfdi_initmodel(&QTM(model40), &QTM(m40sym)[0], 0x40, 0x40); QTMfdi_initmodel(&QTM(model80), &QTM(m80sym)[0], 0x40, 0x80); QTMfdi_initmodel(&QTM(modelC0), &QTM(mC0sym)[0], 0x40, 0xC0); /* model 4 depends on table size, ranges from 20 to 24 */ QTMfdi_initmodel(&QTM(model4), &QTM(m4sym)[0], (msz < 24) ? msz : 24, 0); /* model 5 depends on table size, ranges from 20 to 36 */ QTMfdi_initmodel(&QTM(model5), &QTM(m5sym)[0], (msz < 36) ? msz : 36, 0); /* model 6pos depends on table size, ranges from 20 to 42 */ QTMfdi_initmodel(&QTM(model6pos), &QTM(m6psym)[0], msz, 0); QTMfdi_initmodel(&QTM(model6len), &QTM(m6lsym)[0], 27, 0); return DECR_OK; } /************************************************************ * LZXfdi_init (internal) */ static int LZXfdi_init(int window, fdi_decomp_state *decomp_state) { static const cab_UBYTE bits[] = { 0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10, 10, 11, 11, 12, 12, 13, 13, 14, 14, 15, 15, 16, 16, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17}; static const cab_ULONG base[] = { 0, 1, 2, 3, 4, 6, 8, 12, 16, 24, 32, 48, 64, 96, 128, 192, 256, 384, 512, 768, 1024, 1536, 2048, 3072, 4096, 6144, 8192, 12288, 16384, 24576, 32768, 49152, 65536, 98304, 131072, 196608, 262144, 393216, 524288, 655360, 786432, 917504, 1048576, 1179648, 1310720, 1441792, 1572864, 1703936, 1835008, 1966080, 2097152}; cab_ULONG wndsize = 1 << window; int posn_slots; /* LZX supports window sizes of 2^15 (32Kb) through 2^21 (2Mb) */ /* if a previously allocated window is big enough, keep it */ if (window < 15 || window > 21) return DECR_DATAFORMAT; if (LZX(actual_size) < wndsize) { if (LZX(window)) PFDI_FREE(CAB(hfdi), LZX(window)); LZX(window) = NULL; } if (!LZX(window)) { if (!(LZX(window) = PFDI_ALLOC(CAB(hfdi), wndsize))) return DECR_NOMEMORY; LZX(actual_size) = wndsize; } LZX(window_size) = wndsize; /* initialize static tables */ memcpy(CAB(extra_bits), bits, sizeof(bits)); memcpy(CAB(lzx_position_base), base, sizeof(base)); /* calculate required position slots */ if (window == 20) posn_slots = 42; else if (window == 21) posn_slots = 50; else posn_slots = window << 1; /*posn_slots=i=0; while (i < wndsize) i += 1 << CAB(extra_bits)[posn_slots++]; */ LZX(R0) = LZX(R1) = LZX(R2) = 1; LZX(main_elements) = LZX_NUM_CHARS + (posn_slots << 3); LZX(header_read) = 0; LZX(frames_read) = 0; LZX(block_remaining) = 0; LZX(block_type) = LZX_BLOCKTYPE_INVALID; LZX(intel_curpos) = 0; LZX(intel_started) = 0; LZX(window_posn) = 0; /* initialize tables to 0 (because deltas will be applied to them) */ memset(LZX(MAINTREE_len), 0, sizeof(LZX(MAINTREE_len))); memset(LZX(LENGTH_len), 0, sizeof(LZX(LENGTH_len))); return DECR_OK; } /**************************************************** * NONEfdi_decomp(internal) */ static int NONEfdi_decomp(int inlen, int outlen, fdi_decomp_state *decomp_state) { if (inlen != outlen) return DECR_ILLEGALDATA; if (outlen > CAB_BLOCKMAX) return DECR_DATAFORMAT; memcpy(CAB(outbuf), CAB(inbuf), (size_t) inlen); return DECR_OK; } /******************************************************** * Ziphuft_free (internal) */ static void fdi_Ziphuft_free(HFDI hfdi, struct Ziphuft *t) { register struct Ziphuft *p, *q; /* Go through linked list, freeing from the allocated (t[-1]) address. */ p = t; while (p != NULL) { q = (--p)->v.t; PFDI_FREE(hfdi, p); p = q; } } /********************************************************* * fdi_Ziphuft_build (internal) */ static cab_LONG fdi_Ziphuft_build(cab_ULONG *b, cab_ULONG n, cab_ULONG s, const cab_UWORD *d, const cab_UWORD *e, struct Ziphuft **t, cab_LONG *m, fdi_decomp_state *decomp_state) { cab_ULONG a; /* counter for codes of length k */ cab_ULONG el; /* length of EOB code (value 256) */ cab_ULONG f; /* i repeats in table every f entries */ cab_LONG g; /* maximum code length */ cab_LONG h; /* table level */ register cab_ULONG i; /* counter, current code */ register cab_ULONG j; /* counter */ register cab_LONG k; /* number of bits in current code */ cab_LONG *l; /* stack of bits per table */ register cab_ULONG *p; /* pointer into ZIP(c)[],ZIP(b)[],ZIP(v)[] */ register struct Ziphuft *q; /* points to current table */ struct Ziphuft r; /* table entry for structure assignment */ register cab_LONG w; /* bits before this table == (l * h) */ cab_ULONG *xp; /* pointer into x */ cab_LONG y; /* number of dummy codes added */ cab_ULONG z; /* number of entries in current table */ l = ZIP(lx)+1; /* Generate counts for each bit length */ el = n > 256 ? b[256] : ZIPBMAX; /* set length of EOB code, if any */ for(i = 0; i < ZIPBMAX+1; ++i) ZIP(c)[i] = 0; p = b; i = n; do { ZIP(c)[*p]++; p++; /* assume all entries <= ZIPBMAX */ } while (--i); if (ZIP(c)[0] == n) /* null input--all zero length codes */ { *t = NULL; *m = 0; return 0; } /* Find minimum and maximum length, bound *m by those */ for (j = 1; j <= ZIPBMAX; j++) if (ZIP(c)[j]) break; k = j; /* minimum code length */ if ((cab_ULONG)*m < j) *m = j; for (i = ZIPBMAX; i; i--) if (ZIP(c)[i]) break; g = i; /* maximum code length */ if ((cab_ULONG)*m > i) *m = i; /* Adjust last length count to fill out codes, if needed */ for (y = 1 << j; j < i; j++, y <<= 1) if ((y -= ZIP(c)[j]) < 0) return 2; /* bad input: more codes than bits */ if ((y -= ZIP(c)[i]) < 0) return 2; ZIP(c)[i] += y; /* Generate starting offsets LONGo the value table for each length */ ZIP(x)[1] = j = 0; p = ZIP(c) + 1; xp = ZIP(x) + 2; while (--i) { /* note that i == g from above */ *xp++ = (j += *p++); } /* Make a table of values in order of bit lengths */ p = b; i = 0; do{ if ((j = *p++) != 0) ZIP(v)[ZIP(x)[j]++] = i; } while (++i < n); /* Generate the Huffman codes and for each, make the table entries */ ZIP(x)[0] = i = 0; /* first Huffman code is zero */ p = ZIP(v); /* grab values in bit order */ h = -1; /* no tables yet--level -1 */ w = l[-1] = 0; /* no bits decoded yet */ ZIP(u)[0] = NULL; /* just to keep compilers happy */ q = NULL; /* ditto */ z = 0; /* ditto */ /* go through the bit lengths (k already is bits in shortest code) */ for (; k <= g; k++) { a = ZIP(c)[k]; while (a--) { /* here i is the Huffman code of length k bits for value *p */ /* make tables up to required level */ while (k > w + l[h]) { w += l[h++]; /* add bits already decoded */ /* compute minimum size table less than or equal to *m bits */ if ((z = g - w) > (cab_ULONG)*m) /* upper limit */ z = *m; if ((f = 1 << (j = k - w)) > a + 1) /* try a k-w bit table */ { /* too few codes for k-w bit table */ f -= a + 1; /* deduct codes from patterns left */ xp = ZIP(c) + k; while (++j < z) /* try smaller tables up to z bits */ { if ((f <<= 1) <= *++xp) break; /* enough codes to use up j bits */ f -= *xp; /* else deduct codes from patterns */ } } if ((cab_ULONG)w + j > el && (cab_ULONG)w < el) j = el - w; /* make EOB code end at table */ z = 1 << j; /* table entries for j-bit table */ l[h] = j; /* set table size in stack */ /* allocate and link in new table */ if (!(q = PFDI_ALLOC(CAB(hfdi), (z + 1)*sizeof(struct Ziphuft)))) { if(h) fdi_Ziphuft_free(CAB(hfdi), ZIP(u)[0]); return 3; /* not enough memory */ } *t = q + 1; /* link to list for Ziphuft_free() */ *(t = &(q->v.t)) = NULL; ZIP(u)[h] = ++q; /* table starts after link */ /* connect to last table, if there is one */ if (h) { ZIP(x)[h] = i; /* save pattern for backing up */ r.b = (cab_UBYTE)l[h-1]; /* bits to dump before this table */ r.e = (cab_UBYTE)(16 + j); /* bits in this table */ r.v.t = q; /* pointer to this table */ j = (i & ((1 << w) - 1)) >> (w - l[h-1]); ZIP(u)[h-1][j] = r; /* connect to last table */ } } /* set up table entry in r */ r.b = (cab_UBYTE)(k - w); if (p >= ZIP(v) + n) r.e = 99; /* out of values--invalid code */ else if (*p < s) { r.e = (cab_UBYTE)(*p < 256 ? 16 : 15); /* 256 is end-of-block code */ r.v.n = *p++; /* simple code is just the value */ } else { r.e = (cab_UBYTE)e[*p - s]; /* non-simple--look up in lists */ r.v.n = d[*p++ - s]; } /* fill code-like entries with r */ f = 1 << (k - w); for (j = i >> w; j < z; j += f) q[j] = r; /* backwards increment the k-bit code i */ for (j = 1 << (k - 1); i & j; j >>= 1) i ^= j; i ^= j; /* backup over finished tables */ while ((i & ((1 << w) - 1)) != ZIP(x)[h]) w -= l[--h]; /* don't need to update q */ } } /* return actual size of base table */ *m = l[0]; /* Return true (1) if we were given an incomplete table */ return y != 0 && g != 1; } /********************************************************* * fdi_Zipinflate_codes (internal) */ static cab_LONG fdi_Zipinflate_codes(const struct Ziphuft *tl, const struct Ziphuft *td, cab_LONG bl, cab_LONG bd, fdi_decomp_state *decomp_state) { register cab_ULONG e; /* table entry flag/number of extra bits */ cab_ULONG n, d; /* length and index for copy */ cab_ULONG w; /* current window position */ const struct Ziphuft *t; /* pointer to table entry */ cab_ULONG ml, md; /* masks for bl and bd bits */ register cab_ULONG b; /* bit buffer */ register cab_ULONG k; /* number of bits in bit buffer */ /* make local copies of globals */ b = ZIP(bb); /* initialize bit buffer */ k = ZIP(bk); w = ZIP(window_posn); /* initialize window position */ /* inflate the coded data */ ml = Zipmask[bl]; /* precompute masks for speed */ md = Zipmask[bd]; for(;;) { ZIPNEEDBITS((cab_ULONG)bl) if((e = (t = tl + (b & ml))->e) > 16) do { if (e == 99) return 1; ZIPDUMPBITS(t->b) e -= 16; ZIPNEEDBITS(e) } while ((e = (t = t->v.t + (b & Zipmask[e]))->e) > 16); ZIPDUMPBITS(t->b) if (e == 16) /* then it's a literal */ CAB(outbuf)[w++] = (cab_UBYTE)t->v.n; else /* it's an EOB or a length */ { /* exit if end of block */ if(e == 15) break; /* get length of block to copy */ ZIPNEEDBITS(e) n = t->v.n + (b & Zipmask[e]); ZIPDUMPBITS(e); /* decode distance of block to copy */ ZIPNEEDBITS((cab_ULONG)bd) if ((e = (t = td + (b & md))->e) > 16) do { if (e == 99) return 1; ZIPDUMPBITS(t->b) e -= 16; ZIPNEEDBITS(e) } while ((e = (t = t->v.t + (b & Zipmask[e]))->e) > 16); ZIPDUMPBITS(t->b) ZIPNEEDBITS(e) d = w - t->v.n - (b & Zipmask[e]); ZIPDUMPBITS(e) do { d &= ZIPWSIZE - 1; e = ZIPWSIZE - max(d, w); e = min(e, n); n -= e; do { CAB(outbuf)[w++] = CAB(outbuf)[d++]; } while (--e); } while (n); } } /* restore the globals from the locals */ ZIP(window_posn) = w; /* restore global window pointer */ ZIP(bb) = b; /* restore global bit buffer */ ZIP(bk) = k; /* done */ return 0; } /*********************************************************** * Zipinflate_stored (internal) */ static cab_LONG fdi_Zipinflate_stored(fdi_decomp_state *decomp_state) /* "decompress" an inflated type 0 (stored) block. */ { cab_ULONG n; /* number of bytes in block */ cab_ULONG w; /* current window position */ register cab_ULONG b; /* bit buffer */ register cab_ULONG k; /* number of bits in bit buffer */ /* make local copies of globals */ b = ZIP(bb); /* initialize bit buffer */ k = ZIP(bk); w = ZIP(window_posn); /* initialize window position */ /* go to byte boundary */ n = k & 7; ZIPDUMPBITS(n); /* get the length and its complement */ ZIPNEEDBITS(16) n = (b & 0xffff); ZIPDUMPBITS(16) ZIPNEEDBITS(16) if (n != ((~b) & 0xffff)) return 1; /* error in compressed data */ ZIPDUMPBITS(16) /* read and output the compressed data */ while(n--) { ZIPNEEDBITS(8) CAB(outbuf)[w++] = (cab_UBYTE)b; ZIPDUMPBITS(8) } /* restore the globals from the locals */ ZIP(window_posn) = w; /* restore global window pointer */ ZIP(bb) = b; /* restore global bit buffer */ ZIP(bk) = k; return 0; } /****************************************************** * fdi_Zipinflate_fixed (internal) */ static cab_LONG fdi_Zipinflate_fixed(fdi_decomp_state *decomp_state) { struct Ziphuft *fixed_tl; struct Ziphuft *fixed_td; cab_LONG fixed_bl, fixed_bd; cab_LONG i; /* temporary variable */ cab_ULONG *l; l = ZIP(ll); /* literal table */ for(i = 0; i < 144; i++) l[i] = 8; for(; i < 256; i++) l[i] = 9; for(; i < 280; i++) l[i] = 7; for(; i < 288; i++) /* make a complete, but wrong code set */ l[i] = 8; fixed_bl = 7; if((i = fdi_Ziphuft_build(l, 288, 257, Zipcplens, Zipcplext, &fixed_tl, &fixed_bl, decomp_state))) return i; /* distance table */ for(i = 0; i < 30; i++) /* make an incomplete code set */ l[i] = 5; fixed_bd = 5; if((i = fdi_Ziphuft_build(l, 30, 0, Zipcpdist, Zipcpdext, &fixed_td, &fixed_bd, decomp_state)) > 1) { fdi_Ziphuft_free(CAB(hfdi), fixed_tl); return i; } /* decompress until an end-of-block code */ i = fdi_Zipinflate_codes(fixed_tl, fixed_td, fixed_bl, fixed_bd, decomp_state); fdi_Ziphuft_free(CAB(hfdi), fixed_td); fdi_Ziphuft_free(CAB(hfdi), fixed_tl); return i; } /************************************************************** * fdi_Zipinflate_dynamic (internal) */ static cab_LONG fdi_Zipinflate_dynamic(fdi_decomp_state *decomp_state) /* decompress an inflated type 2 (dynamic Huffman codes) block. */ { cab_LONG i; /* temporary variables */ cab_ULONG j; cab_ULONG *ll; cab_ULONG l; /* last length */ cab_ULONG m; /* mask for bit lengths table */ cab_ULONG n; /* number of lengths to get */ struct Ziphuft *tl; /* literal/length code table */ struct Ziphuft *td; /* distance code table */ cab_LONG bl; /* lookup bits for tl */ cab_LONG bd; /* lookup bits for td */ cab_ULONG nb; /* number of bit length codes */ cab_ULONG nl; /* number of literal/length codes */ cab_ULONG nd; /* number of distance codes */ register cab_ULONG b; /* bit buffer */ register cab_ULONG k; /* number of bits in bit buffer */ /* make local bit buffer */ b = ZIP(bb); k = ZIP(bk); ll = ZIP(ll); /* read in table lengths */ ZIPNEEDBITS(5) nl = 257 + (b & 0x1f); /* number of literal/length codes */ ZIPDUMPBITS(5) ZIPNEEDBITS(5) nd = 1 + (b & 0x1f); /* number of distance codes */ ZIPDUMPBITS(5) ZIPNEEDBITS(4) nb = 4 + (b & 0xf); /* number of bit length codes */ ZIPDUMPBITS(4) if(nl > 288 || nd > 32) return 1; /* bad lengths */ /* read in bit-length-code lengths */ for(j = 0; j < nb; j++) { ZIPNEEDBITS(3) ll[Zipborder[j]] = b & 7; ZIPDUMPBITS(3) } for(; j < 19; j++) ll[Zipborder[j]] = 0; /* build decoding table for trees--single level, 7 bit lookup */ bl = 7; if((i = fdi_Ziphuft_build(ll, 19, 19, NULL, NULL, &tl, &bl, decomp_state)) != 0) { if(i == 1) fdi_Ziphuft_free(CAB(hfdi), tl); return i; /* incomplete code set */ } /* read in literal and distance code lengths */ n = nl + nd; m = Zipmask[bl]; i = l = 0; while((cab_ULONG)i < n) { ZIPNEEDBITS((cab_ULONG)bl) j = (td = tl + (b & m))->b; ZIPDUMPBITS(j) j = td->v.n; if (j < 16) /* length of code in bits (0..15) */ ll[i++] = l = j; /* save last length in l */ else if (j == 16) /* repeat last length 3 to 6 times */ { ZIPNEEDBITS(2) j = 3 + (b & 3); ZIPDUMPBITS(2) if((cab_ULONG)i + j > n) return 1; while (j--) ll[i++] = l; } else if (j == 17) /* 3 to 10 zero length codes */ { ZIPNEEDBITS(3) j = 3 + (b & 7); ZIPDUMPBITS(3) if ((cab_ULONG)i + j > n) return 1; while (j--) ll[i++] = 0; l = 0; } else /* j == 18: 11 to 138 zero length codes */ { ZIPNEEDBITS(7) j = 11 + (b & 0x7f); ZIPDUMPBITS(7) if ((cab_ULONG)i + j > n) return 1; while (j--) ll[i++] = 0; l = 0; } } /* free decoding table for trees */ fdi_Ziphuft_free(CAB(hfdi), tl); /* restore the global bit buffer */ ZIP(bb) = b; ZIP(bk) = k; /* build the decoding tables for literal/length and distance codes */ bl = ZIPLBITS; if((i = fdi_Ziphuft_build(ll, nl, 257, Zipcplens, Zipcplext, &tl, &bl, decomp_state)) != 0) { if(i == 1) fdi_Ziphuft_free(CAB(hfdi), tl); return i; /* incomplete code set */ } bd = ZIPDBITS; fdi_Ziphuft_build(ll + nl, nd, 0, Zipcpdist, Zipcpdext, &td, &bd, decomp_state); /* decompress until an end-of-block code */ if(fdi_Zipinflate_codes(tl, td, bl, bd, decomp_state)) return 1; /* free the decoding tables, return */ fdi_Ziphuft_free(CAB(hfdi), tl); fdi_Ziphuft_free(CAB(hfdi), td); return 0; } /***************************************************** * fdi_Zipinflate_block (internal) */ static cab_LONG fdi_Zipinflate_block(cab_LONG *e, fdi_decomp_state *decomp_state) /* e == last block flag */ { /* decompress an inflated block */ cab_ULONG t; /* block type */ register cab_ULONG b; /* bit buffer */ register cab_ULONG k; /* number of bits in bit buffer */ /* make local bit buffer */ b = ZIP(bb); k = ZIP(bk); /* read in last block bit */ ZIPNEEDBITS(1) *e = (cab_LONG)b & 1; ZIPDUMPBITS(1) /* read in block type */ ZIPNEEDBITS(2) t = b & 3; ZIPDUMPBITS(2) /* restore the global bit buffer */ ZIP(bb) = b; ZIP(bk) = k; /* inflate that block type */ if(t == 2) return fdi_Zipinflate_dynamic(decomp_state); if(t == 0) return fdi_Zipinflate_stored(decomp_state); if(t == 1) return fdi_Zipinflate_fixed(decomp_state); /* bad block type */ return 2; } /**************************************************** * ZIPfdi_decomp(internal) */ static int ZIPfdi_decomp(int inlen, int outlen, fdi_decomp_state *decomp_state) { cab_LONG e; /* last block flag */ TRACE("(inlen == %d, outlen == %d)\n", inlen, outlen); ZIP(inpos) = CAB(inbuf); ZIP(bb) = ZIP(bk) = ZIP(window_posn) = 0; if(outlen > ZIPWSIZE) return DECR_DATAFORMAT; /* CK = Chris Kirmse, official Microsoft purloiner */ if(ZIP(inpos)[0] != 0x43 || ZIP(inpos)[1] != 0x4B) return DECR_ILLEGALDATA; ZIP(inpos) += 2; do { if(fdi_Zipinflate_block(&e, decomp_state)) return DECR_ILLEGALDATA; } while(!e); /* return success */ return DECR_OK; } /******************************************************************* * QTMfdi_decomp(internal) */ static int QTMfdi_decomp(int inlen, int outlen, fdi_decomp_state *decomp_state) { cab_UBYTE *inpos = CAB(inbuf); cab_UBYTE *window = QTM(window); cab_UBYTE *runsrc, *rundest; cab_ULONG window_posn = QTM(window_posn); cab_ULONG window_size = QTM(window_size); /* used by bitstream macros */ register int bitsleft, bitrun, bitsneed; register cab_ULONG bitbuf; /* used by GET_SYMBOL */ cab_ULONG range; cab_UWORD symf; int i; int extra, togo = outlen, match_length = 0, copy_length; cab_UBYTE selector, sym; cab_ULONG match_offset = 0; cab_UWORD H = 0xFFFF, L = 0, C; TRACE("(inlen == %d, outlen == %d)\n", inlen, outlen); /* read initial value of C */ Q_INIT_BITSTREAM; Q_READ_BITS(C, 16); /* apply 2^x-1 mask */ window_posn &= window_size - 1; /* runs can't straddle the window wraparound */ if ((window_posn + togo) > window_size) { TRACE("straddled run\n"); return DECR_DATAFORMAT; } while (togo > 0) { GET_SYMBOL(model7, selector); switch (selector) { case 0: GET_SYMBOL(model00, sym); window[window_posn++] = sym; togo--; break; case 1: GET_SYMBOL(model40, sym); window[window_posn++] = sym; togo--; break; case 2: GET_SYMBOL(model80, sym); window[window_posn++] = sym; togo--; break; case 3: GET_SYMBOL(modelC0, sym); window[window_posn++] = sym; togo--; break; case 4: /* selector 4 = fixed length of 3 */ GET_SYMBOL(model4, sym); Q_READ_BITS(extra, CAB(q_extra_bits)[sym]); match_offset = CAB(q_position_base)[sym] + extra + 1; match_length = 3; break; case 5: /* selector 5 = fixed length of 4 */ GET_SYMBOL(model5, sym); Q_READ_BITS(extra, CAB(q_extra_bits)[sym]); match_offset = CAB(q_position_base)[sym] + extra + 1; match_length = 4; break; case 6: /* selector 6 = variable length */ GET_SYMBOL(model6len, sym); Q_READ_BITS(extra, CAB(q_length_extra)[sym]); match_length = CAB(q_length_base)[sym] + extra + 5; GET_SYMBOL(model6pos, sym); Q_READ_BITS(extra, CAB(q_extra_bits)[sym]); match_offset = CAB(q_position_base)[sym] + extra + 1; break; default: TRACE("Selector is bogus\n"); return DECR_ILLEGALDATA; } /* if this is a match */ if (selector >= 4) { rundest = window + window_posn; togo -= match_length; /* copy any wrapped around source data */ if (window_posn >= match_offset) { /* no wrap */ runsrc = rundest - match_offset; } else { runsrc = rundest + (window_size - match_offset); copy_length = match_offset - window_posn; if (copy_length < match_length) { match_length -= copy_length; window_posn += copy_length; while (copy_length-- > 0) *rundest++ = *runsrc++; runsrc = window; } } window_posn += match_length; /* copy match data - no worries about destination wraps */ while (match_length-- > 0) *rundest++ = *runsrc++; } } /* while (togo > 0) */ if (togo != 0) { TRACE("Frame overflow, this_run = %d\n", togo); return DECR_ILLEGALDATA; } memcpy(CAB(outbuf), window + ((!window_posn) ? window_size : window_posn) - outlen, outlen); QTM(window_posn) = window_posn; return DECR_OK; } /************************************************************ * fdi_lzx_read_lens (internal) */ static int fdi_lzx_read_lens(cab_UBYTE *lens, cab_ULONG first, cab_ULONG last, struct lzx_bits *lb, fdi_decomp_state *decomp_state) { cab_ULONG i,j, x,y; int z; register cab_ULONG bitbuf = lb->bb; register int bitsleft = lb->bl; cab_UBYTE *inpos = lb->ip; cab_UWORD *hufftbl; for (x = 0; x < 20; x++) { READ_BITS(y, 4); LENTABLE(PRETREE)[x] = y; } BUILD_TABLE(PRETREE); for (x = first; x < last; ) { READ_HUFFSYM(PRETREE, z); if (z == 17) { READ_BITS(y, 4); y += 4; while (y--) lens[x++] = 0; } else if (z == 18) { READ_BITS(y, 5); y += 20; while (y--) lens[x++] = 0; } else if (z == 19) { READ_BITS(y, 1); y += 4; READ_HUFFSYM(PRETREE, z); z = lens[x] - z; if (z < 0) z += 17; while (y--) lens[x++] = z; } else { z = lens[x] - z; if (z < 0) z += 17; lens[x++] = z; } } lb->bb = bitbuf; lb->bl = bitsleft; lb->ip = inpos; return 0; } /******************************************************* * LZXfdi_decomp(internal) */ static int LZXfdi_decomp(int inlen, int outlen, fdi_decomp_state *decomp_state) { cab_UBYTE *inpos = CAB(inbuf); const cab_UBYTE *endinp = inpos + inlen; cab_UBYTE *window = LZX(window); cab_UBYTE *runsrc, *rundest; cab_UWORD *hufftbl; /* used in READ_HUFFSYM macro as chosen decoding table */ cab_ULONG window_posn = LZX(window_posn); cab_ULONG window_size = LZX(window_size); cab_ULONG R0 = LZX(R0); cab_ULONG R1 = LZX(R1); cab_ULONG R2 = LZX(R2); register cab_ULONG bitbuf; register int bitsleft; cab_ULONG match_offset, i,j,k; /* ijk used in READ_HUFFSYM macro */ struct lzx_bits lb; /* used in READ_LENGTHS macro */ int togo = outlen, this_run, main_element, aligned_bits; int match_length, copy_length, length_footer, extra, verbatim_bits; TRACE("(inlen == %d, outlen == %d)\n", inlen, outlen); INIT_BITSTREAM; /* read header if necessary */ if (!LZX(header_read)) { i = j = 0; READ_BITS(k, 1); if (k) { READ_BITS(i,16); READ_BITS(j,16); } LZX(intel_filesize) = (i << 16) | j; /* or 0 if not encoded */ LZX(header_read) = 1; } /* main decoding loop */ while (togo > 0) { /* last block finished, new block expected */ if (LZX(block_remaining) == 0) { if (LZX(block_type) == LZX_BLOCKTYPE_UNCOMPRESSED) { if (LZX(block_length) & 1) inpos++; /* realign bitstream to word */ INIT_BITSTREAM; } READ_BITS(LZX(block_type), 3); READ_BITS(i, 16); READ_BITS(j, 8); LZX(block_remaining) = LZX(block_length) = (i << 8) | j; switch (LZX(block_type)) { case LZX_BLOCKTYPE_ALIGNED: for (i = 0; i < 8; i++) { READ_BITS(j, 3); LENTABLE(ALIGNED)[i] = j; } BUILD_TABLE(ALIGNED); /* rest of aligned header is same as verbatim */ case LZX_BLOCKTYPE_VERBATIM: READ_LENGTHS(MAINTREE, 0, 256, fdi_lzx_read_lens); READ_LENGTHS(MAINTREE, 256, LZX(main_elements), fdi_lzx_read_lens); BUILD_TABLE(MAINTREE); if (LENTABLE(MAINTREE)[0xE8] != 0) LZX(intel_started) = 1; READ_LENGTHS(LENGTH, 0, LZX_NUM_SECONDARY_LENGTHS, fdi_lzx_read_lens); BUILD_TABLE(LENGTH); break; case LZX_BLOCKTYPE_UNCOMPRESSED: LZX(intel_started) = 1; /* because we can't assume otherwise */ ENSURE_BITS(16); /* get up to 16 pad bits into the buffer */ if (bitsleft > 16) inpos -= 2; /* and align the bitstream! */ R0 = inpos[0]|(inpos[1]<<8)|(inpos[2]<<16)|(inpos[3]<<24);inpos+=4; R1 = inpos[0]|(inpos[1]<<8)|(inpos[2]<<16)|(inpos[3]<<24);inpos+=4; R2 = inpos[0]|(inpos[1]<<8)|(inpos[2]<<16)|(inpos[3]<<24);inpos+=4; break; default: return DECR_ILLEGALDATA; } } /* buffer exhaustion check */ if (inpos > endinp) { /* it's possible to have a file where the next run is less than * 16 bits in size. In this case, the READ_HUFFSYM() macro used * in building the tables will exhaust the buffer, so we should * allow for this, but not allow those accidentally read bits to * be used (so we check that there are at least 16 bits * remaining - in this boundary case they aren't really part of * the compressed data) */ if (inpos > (endinp+2) || bitsleft < 16) return DECR_ILLEGALDATA; } while ((this_run = LZX(block_remaining)) > 0 && togo > 0) { if (this_run > togo) this_run = togo; togo -= this_run; LZX(block_remaining) -= this_run; /* apply 2^x-1 mask */ window_posn &= window_size - 1; /* runs can't straddle the window wraparound */ if ((window_posn + this_run) > window_size) return DECR_DATAFORMAT; switch (LZX(block_type)) { case LZX_BLOCKTYPE_VERBATIM: while (this_run > 0) { READ_HUFFSYM(MAINTREE, main_element); if (main_element < LZX_NUM_CHARS) { /* literal: 0 to LZX_NUM_CHARS-1 */ window[window_posn++] = main_element; this_run--; } else { /* match: LZX_NUM_CHARS + ((slot<<3) | length_header (3 bits)) */ main_element -= LZX_NUM_CHARS; match_length = main_element & LZX_NUM_PRIMARY_LENGTHS; if (match_length == LZX_NUM_PRIMARY_LENGTHS) { READ_HUFFSYM(LENGTH, length_footer); match_length += length_footer; } match_length += LZX_MIN_MATCH; match_offset = main_element >> 3; if (match_offset > 2) { /* not repeated offset */ if (match_offset != 3) { extra = CAB(extra_bits)[match_offset]; READ_BITS(verbatim_bits, extra); match_offset = CAB(lzx_position_base)[match_offset] - 2 + verbatim_bits; } else { match_offset = 1; } /* update repeated offset LRU queue */ R2 = R1; R1 = R0; R0 = match_offset; } else if (match_offset == 0) { match_offset = R0; } else if (match_offset == 1) { match_offset = R1; R1 = R0; R0 = match_offset; } else /* match_offset == 2 */ { match_offset = R2; R2 = R0; R0 = match_offset; } rundest = window + window_posn; this_run -= match_length; /* copy any wrapped around source data */ if (window_posn >= match_offset) { /* no wrap */ runsrc = rundest - match_offset; } else { runsrc = rundest + (window_size - match_offset); copy_length = match_offset - window_posn; if (copy_length < match_length) { match_length -= copy_length; window_posn += copy_length; while (copy_length-- > 0) *rundest++ = *runsrc++; runsrc = window; } } window_posn += match_length; /* copy match data - no worries about destination wraps */ while (match_length-- > 0) *rundest++ = *runsrc++; } } break; case LZX_BLOCKTYPE_ALIGNED: while (this_run > 0) { READ_HUFFSYM(MAINTREE, main_element); if (main_element < LZX_NUM_CHARS) { /* literal: 0 to LZX_NUM_CHARS-1 */ window[window_posn++] = main_element; this_run--; } else { /* match: LZX_NUM_CHARS + ((slot<<3) | length_header (3 bits)) */ main_element -= LZX_NUM_CHARS; match_length = main_element & LZX_NUM_PRIMARY_LENGTHS; if (match_length == LZX_NUM_PRIMARY_LENGTHS) { READ_HUFFSYM(LENGTH, length_footer); match_length += length_footer; } match_length += LZX_MIN_MATCH; match_offset = main_element >> 3; if (match_offset > 2) { /* not repeated offset */ extra = CAB(extra_bits)[match_offset]; match_offset = CAB(lzx_position_base)[match_offset] - 2; if (extra > 3) { /* verbatim and aligned bits */ extra -= 3; READ_BITS(verbatim_bits, extra); match_offset += (verbatim_bits << 3); READ_HUFFSYM(ALIGNED, aligned_bits); match_offset += aligned_bits; } else if (extra == 3) { /* aligned bits only */ READ_HUFFSYM(ALIGNED, aligned_bits); match_offset += aligned_bits; } else if (extra > 0) { /* extra==1, extra==2 */ /* verbatim bits only */ READ_BITS(verbatim_bits, extra); match_offset += verbatim_bits; } else /* extra == 0 */ { /* ??? */ match_offset = 1; } /* update repeated offset LRU queue */ R2 = R1; R1 = R0; R0 = match_offset; } else if (match_offset == 0) { match_offset = R0; } else if (match_offset == 1) { match_offset = R1; R1 = R0; R0 = match_offset; } else /* match_offset == 2 */ { match_offset = R2; R2 = R0; R0 = match_offset; } rundest = window + window_posn; this_run -= match_length; /* copy any wrapped around source data */ if (window_posn >= match_offset) { /* no wrap */ runsrc = rundest - match_offset; } else { runsrc = rundest + (window_size - match_offset); copy_length = match_offset - window_posn; if (copy_length < match_length) { match_length -= copy_length; window_posn += copy_length; while (copy_length-- > 0) *rundest++ = *runsrc++; runsrc = window; } } window_posn += match_length; /* copy match data - no worries about destination wraps */ while (match_length-- > 0) *rundest++ = *runsrc++; } } break; case LZX_BLOCKTYPE_UNCOMPRESSED: if ((inpos + this_run) > endinp) return DECR_ILLEGALDATA; memcpy(window + window_posn, inpos, (size_t) this_run); inpos += this_run; window_posn += this_run; break; default: return DECR_ILLEGALDATA; /* might as well */ } } } if (togo != 0) return DECR_ILLEGALDATA; memcpy(CAB(outbuf), window + ((!window_posn) ? window_size : window_posn) - outlen, (size_t) outlen); LZX(window_posn) = window_posn; LZX(R0) = R0; LZX(R1) = R1; LZX(R2) = R2; /* intel E8 decoding */ if ((LZX(frames_read)++ < 32768) && LZX(intel_filesize) != 0) { if (outlen <= 6 || !LZX(intel_started)) { LZX(intel_curpos) += outlen; } else { cab_UBYTE *data = CAB(outbuf); cab_UBYTE *dataend = data + outlen - 10; cab_LONG curpos = LZX(intel_curpos); cab_LONG filesize = LZX(intel_filesize); cab_LONG abs_off, rel_off; LZX(intel_curpos) = curpos + outlen; while (data < dataend) { if (*data++ != 0xE8) { curpos++; continue; } abs_off = data[0] | (data[1]<<8) | (data[2]<<16) | (data[3]<<24); if ((abs_off >= -curpos) && (abs_off < filesize)) { rel_off = (abs_off >= 0) ? abs_off - curpos : abs_off + filesize; data[0] = (cab_UBYTE) rel_off; data[1] = (cab_UBYTE) (rel_off >> 8); data[2] = (cab_UBYTE) (rel_off >> 16); data[3] = (cab_UBYTE) (rel_off >> 24); } data += 4; curpos += 5; } } } return DECR_OK; } /********************************************************** * fdi_decomp (internal) * * Decompress the requested number of bytes. If savemode is zero, * do not save the output anywhere, just plow through blocks until we * reach the specified (uncompressed) distance from the starting point, * and remember the position of the cabfile pointer (and which cabfile) * after we are done; otherwise, save the data out to CAB(filehf), * decompressing the requested number of bytes and writing them out. This * is also where we jump to additional cabinets in the case of split * cab's, and provide (some of) the NEXT_CABINET notification semantics. */ static int fdi_decomp(const struct fdi_file *fi, int savemode, fdi_decomp_state *decomp_state, char *pszCabPath, PFNFDINOTIFY pfnfdin, void *pvUser) { cab_ULONG bytes = savemode ? fi->length : fi->offset - CAB(offset); cab_UBYTE buf[cfdata_SIZEOF], *data; cab_UWORD inlen, len, outlen, cando; cab_ULONG cksum; cab_LONG err; fdi_decomp_state *cab = (savemode && CAB(decomp_cab)) ? CAB(decomp_cab) : decomp_state; TRACE("(fi == ^%p, savemode == %d, bytes == %d)\n", fi, savemode, bytes); while (bytes > 0) { /* cando = the max number of bytes we can do */ cando = CAB(outlen); if (cando > bytes) cando = bytes; /* if cando != 0 */ if (cando && savemode) PFDI_WRITE(CAB(hfdi), CAB(filehf), CAB(outpos), cando); CAB(outpos) += cando; CAB(outlen) -= cando; bytes -= cando; if (!bytes) break; /* we only get here if we emptied the output buffer */ /* read data header + data */ inlen = outlen = 0; while (outlen == 0) { /* read the block header, skip the reserved part */ if (PFDI_READ(CAB(hfdi), cab->cabhf, buf, cfdata_SIZEOF) != cfdata_SIZEOF) return DECR_INPUT; if (PFDI_SEEK(CAB(hfdi), cab->cabhf, cab->mii.block_resv, SEEK_CUR) == -1) return DECR_INPUT; /* we shouldn't get blocks over CAB_INPUTMAX in size */ data = CAB(inbuf) + inlen; len = EndGetI16(buf+cfdata_CompressedSize); inlen += len; if (inlen > CAB_INPUTMAX) return DECR_INPUT; if (PFDI_READ(CAB(hfdi), cab->cabhf, data, len) != len) return DECR_INPUT; /* clear two bytes after read-in data */ data[len+1] = data[len+2] = 0; /* perform checksum test on the block (if one is stored) */ cksum = EndGetI32(buf+cfdata_CheckSum); if (cksum && cksum != checksum(buf+4, 4, checksum(data, len, 0))) return DECR_CHECKSUM; /* checksum is wrong */ outlen = EndGetI16(buf+cfdata_UncompressedSize); /* outlen=0 means this block was the last contiguous part of a split block, continued in the next cabinet */ if (outlen == 0) { int pathlen, filenamelen, idx, i; INT_PTR cabhf; char fullpath[MAX_PATH], userpath[256]; FDINOTIFICATION fdin; FDICABINETINFO fdici; char emptystring = '\0'; cab_UBYTE buf2[64]; int success = FALSE; struct fdi_folder *fol = NULL, *linkfol = NULL; struct fdi_file *file = NULL, *linkfile = NULL; tryanothercab: /* set up the next decomp_state... */ if (!(cab->next)) { if (!cab->mii.hasnext) return DECR_INPUT; if (!((cab->next = PFDI_ALLOC(CAB(hfdi), sizeof(fdi_decomp_state))))) return DECR_NOMEMORY; ZeroMemory(cab->next, sizeof(fdi_decomp_state)); /* copy pszCabPath to userpath */ ZeroMemory(userpath, 256); pathlen = (pszCabPath) ? strlen(pszCabPath) : 0; if (pathlen) { if (pathlen < 256) { for (i = 0; i <= pathlen; i++) userpath[i] = pszCabPath[i]; } /* else we are in a weird place... let's leave it blank and see if the user fixes it */ } /* initial fdintNEXT_CABINET notification */ ZeroMemory(&fdin, sizeof(FDINOTIFICATION)); fdin.psz1 = (cab->mii.nextname) ? cab->mii.nextname : &emptystring; fdin.psz2 = (cab->mii.nextinfo) ? cab->mii.nextinfo : &emptystring; fdin.psz3 = &userpath[0]; fdin.fdie = FDIERROR_NONE; fdin.pv = pvUser; if (((*pfnfdin)(fdintNEXT_CABINET, &fdin))) return DECR_USERABORT; do { pathlen = strlen(userpath); filenamelen = (cab->mii.nextname) ? strlen(cab->mii.nextname) : 0; /* slight overestimation here to save CPU cycles in the developer's brain */ if ((pathlen + filenamelen + 3) > MAX_PATH) { ERR("MAX_PATH exceeded.\n"); return DECR_ILLEGALDATA; } /* paste the path and filename together */ idx = 0; if (pathlen) { for (i = 0; i < pathlen; i++) fullpath[idx++] = userpath[i]; if (fullpath[idx - 1] != '\\') fullpath[idx++] = '\\'; } if (filenamelen) for (i = 0; i < filenamelen; i++) fullpath[idx++] = cab->mii.nextname[i]; fullpath[idx] = '\0'; TRACE("full cab path/file name: %s\n", debugstr_a(fullpath)); /* try to get a handle to the cabfile */ cabhf = PFDI_OPEN(CAB(hfdi), fullpath, _O_RDONLY|_O_BINARY, _S_IREAD | _S_IWRITE); if (cabhf == -1) { /* no file. allow the user to try again */ fdin.fdie = FDIERROR_CABINET_NOT_FOUND; if (((*pfnfdin)(fdintNEXT_CABINET, &fdin))) return DECR_USERABORT; continue; } if (cabhf == 0) { ERR("PFDI_OPEN returned zero for %s.\n", fullpath); fdin.fdie = FDIERROR_CABINET_NOT_FOUND; if (((*pfnfdin)(fdintNEXT_CABINET, &fdin))) return DECR_USERABORT; continue; } /* check if it's really a cabfile. Note that this doesn't implement the bug */ if (!FDI_read_entries(CAB(hfdi), cabhf, &fdici, &(cab->next->mii))) { WARN("FDIIsCabinet failed.\n"); PFDI_CLOSE(CAB(hfdi), cabhf); fdin.fdie = FDIERROR_NOT_A_CABINET; if (((*pfnfdin)(fdintNEXT_CABINET, &fdin))) return DECR_USERABORT; continue; } if ((fdici.setID != cab->setID) || (fdici.iCabinet != (cab->iCabinet + 1))) { WARN("Wrong Cabinet.\n"); PFDI_CLOSE(CAB(hfdi), cabhf); fdin.fdie = FDIERROR_WRONG_CABINET; if (((*pfnfdin)(fdintNEXT_CABINET, &fdin))) return DECR_USERABORT; continue; } break; } while (1); /* cabinet notification */ ZeroMemory(&fdin, sizeof(FDINOTIFICATION)); fdin.setID = fdici.setID; fdin.iCabinet = fdici.iCabinet; fdin.pv = pvUser; fdin.psz1 = (cab->next->mii.nextname) ? cab->next->mii.nextname : &emptystring; fdin.psz2 = (cab->next->mii.nextinfo) ? cab->next->mii.nextinfo : &emptystring; fdin.psz3 = pszCabPath; if (((*pfnfdin)(fdintCABINET_INFO, &fdin))) return DECR_USERABORT; cab->next->setID = fdici.setID; cab->next->iCabinet = fdici.iCabinet; cab->next->hfdi = CAB(hfdi); cab->next->filehf = CAB(filehf); cab->next->cabhf = cabhf; cab->next->decompress = CAB(decompress); /* crude, but unused anyhow */ cab = cab->next; /* advance to the next cabinet */ /* read folders */ for (i = 0; i < fdici.cFolders; i++) { if (PFDI_READ(CAB(hfdi), cab->cabhf, buf2, cffold_SIZEOF) != cffold_SIZEOF) return DECR_INPUT; if (cab->mii.folder_resv > 0) PFDI_SEEK(CAB(hfdi), cab->cabhf, cab->mii.folder_resv, SEEK_CUR); fol = PFDI_ALLOC(CAB(hfdi), sizeof(struct fdi_folder)); if (!fol) { ERR("out of memory!\n"); return DECR_NOMEMORY; } ZeroMemory(fol, sizeof(struct fdi_folder)); if (!(cab->firstfol)) cab->firstfol = fol; fol->offset = (cab_off_t) EndGetI32(buf2+cffold_DataOffset); fol->num_blocks = EndGetI16(buf2+cffold_NumBlocks); fol->comp_type = EndGetI16(buf2+cffold_CompType); if (linkfol) linkfol->next = fol; linkfol = fol; } /* read files */ for (i = 0; i < fdici.cFiles; i++) { if (PFDI_READ(CAB(hfdi), cab->cabhf, buf2, cffile_SIZEOF) != cffile_SIZEOF) return DECR_INPUT; file = PFDI_ALLOC(CAB(hfdi), sizeof(struct fdi_file)); if (!file) { ERR("out of memory!\n"); return DECR_NOMEMORY; } ZeroMemory(file, sizeof(struct fdi_file)); if (!(cab->firstfile)) cab->firstfile = file; file->length = EndGetI32(buf2+cffile_UncompressedSize); file->offset = EndGetI32(buf2+cffile_FolderOffset); file->index = EndGetI16(buf2+cffile_FolderIndex); file->time = EndGetI16(buf2+cffile_Time); file->date = EndGetI16(buf2+cffile_Date); file->attribs = EndGetI16(buf2+cffile_Attribs); file->filename = FDI_read_string(CAB(hfdi), cab->cabhf, fdici.cbCabinet); if (!file->filename) return DECR_INPUT; if (linkfile) linkfile->next = file; linkfile = file; } } else cab = cab->next; /* advance to the next cabinet */ /* iterate files -- if we encounter the continued file, process it -- otherwise, jump to the label above and keep looking */ for (file = cab->firstfile; (file); file = file->next) { if ((file->index & cffileCONTINUED_FROM_PREV) == cffileCONTINUED_FROM_PREV) { /* check to ensure a real match */ if (lstrcmpiA(fi->filename, file->filename) == 0) { success = TRUE; if (PFDI_SEEK(CAB(hfdi), cab->cabhf, cab->firstfol->offset, SEEK_SET) == -1) return DECR_INPUT; break; } } } if (!success) goto tryanothercab; /* FIXME: shouldn't this trigger "Wrong Cabinet" notification? */ } } /* decompress block */ if ((err = CAB(decompress)(inlen, outlen, decomp_state))) return err; CAB(outlen) = outlen; CAB(outpos) = CAB(outbuf); } CAB(decomp_cab) = cab; return DECR_OK; } static void free_decompression_temps(HFDI hfdi, const struct fdi_folder *fol, fdi_decomp_state *decomp_state) { switch (fol->comp_type & cffoldCOMPTYPE_MASK) { case cffoldCOMPTYPE_LZX: if (LZX(window)) { PFDI_FREE(hfdi, LZX(window)); LZX(window) = NULL; } break; case cffoldCOMPTYPE_QUANTUM: if (QTM(window)) { PFDI_FREE(hfdi, QTM(window)); QTM(window) = NULL; } break; } } static void free_decompression_mem(HFDI hfdi, fdi_decomp_state *decomp_state, struct fdi_file *file) { struct fdi_folder *fol; while (decomp_state) { fdi_decomp_state *prev_fds; PFDI_CLOSE(hfdi, CAB(cabhf)); /* free the storage remembered by mii */ if (CAB(mii).nextname) PFDI_FREE(hfdi, CAB(mii).nextname); if (CAB(mii).nextinfo) PFDI_FREE(hfdi, CAB(mii).nextinfo); if (CAB(mii).prevname) PFDI_FREE(hfdi, CAB(mii).prevname); if (CAB(mii).previnfo) PFDI_FREE(hfdi, CAB(mii).previnfo); while (CAB(firstfol)) { fol = CAB(firstfol); CAB(firstfol) = CAB(firstfol)->next; PFDI_FREE(hfdi, fol); } while (CAB(firstfile)) { file = CAB(firstfile); if (file->filename) PFDI_FREE(hfdi, (void *)file->filename); CAB(firstfile) = CAB(firstfile)->next; PFDI_FREE(hfdi, file); } prev_fds = decomp_state; decomp_state = CAB(next); PFDI_FREE(hfdi, prev_fds); } } /*********************************************************************** * FDICopy (CABINET.22) * * Iterates through the files in the Cabinet file indicated by name and * file-location. May chain forward to additional cabinets (typically * only one) if files which begin in this Cabinet are continued in another * cabinet. For each file which is partially contained in this cabinet, * and partially contained in a prior cabinet, provides fdintPARTIAL_FILE * notification to the pfnfdin callback. For each file which begins in * this cabinet, fdintCOPY_FILE notification is provided to the pfnfdin * callback, and the file is optionally decompressed and saved to disk. * Notification is not provided for files which are not at least partially * contained in the specified cabinet file. * * See below for a thorough explanation of the various notification * callbacks. * * PARAMS * hfdi [I] An HFDI from FDICreate * pszCabinet [I] C-style string containing the filename of the cabinet * pszCabPath [I] C-style string containing the file path of the cabinet * flags [I] "Decoder parameters". Ignored. Suggested value: 0. * pfnfdin [I] Pointer to a notification function. See CALLBACKS below. * pfnfdid [I] Pointer to a decryption function. Ignored. Suggested * value: NULL. * pvUser [I] arbitrary void * value which is passed to callbacks. * * RETURNS * TRUE if successful. * FALSE if unsuccessful (error information is provided in the ERF structure * associated with the provided decompression handle by FDICreate). * * CALLBACKS * * Two pointers to callback functions are provided as parameters to FDICopy: * pfnfdin(of type PFNFDINOTIFY), and pfnfdid (of type PFNFDIDECRYPT). These * types are as follows: * * typedef INT_PTR (__cdecl *PFNFDINOTIFY) ( FDINOTIFICATIONTYPE fdint, * PFDINOTIFICATION pfdin ); * * typedef int (__cdecl *PFNFDIDECRYPT) ( PFDIDECRYPT pfdid ); * * You can create functions of this type using the FNFDINOTIFY() and * FNFDIDECRYPT() macros, respectively. For example: * * FNFDINOTIFY(mycallback) { * / * use variables fdint and pfdin to process notification * / * } * * The second callback, which could be used for decrypting encrypted data, * is not used at all. * * Each notification informs the user of some event which has occurred during * decompression of the cabinet file; each notification is also an opportunity * for the callee to abort decompression. The information provided to the * callback and the meaning of the callback's return value vary drastically * across the various types of notification. The type of notification is the * fdint parameter; all other information is provided to the callback in * notification-specific parts of the FDINOTIFICATION structure pointed to by * pfdin. The only part of that structure which is assigned for every callback * is the pv element, which contains the arbitrary value which was passed to * FDICopy in the pvUser argument (psz1 is also used each time, but its meaning * is highly dependent on fdint). * * If you encounter unknown notifications, you should return zero if you want * decompression to continue (or -1 to abort). All strings used in the * callbacks are regular C-style strings. Detailed descriptions of each * notification type follow: * * fdintCABINET_INFO: * * This is the first notification provided after calling FDICopy, and provides * the user with various information about the cabinet. Note that this is * called for each cabinet FDICopy opens, not just the first one. In the * structure pointed to by pfdin, psz1 contains a pointer to the name of the * next cabinet file in the set after the one just loaded (if any), psz2 * contains a pointer to the name or "info" of the next disk, psz3 * contains a pointer to the file-path of the current cabinet, setID * contains an arbitrary constant associated with this set of cabinet files, * and iCabinet contains the numerical index of the current cabinet within * that set. Return zero, or -1 to abort. * * fdintPARTIAL_FILE: * * This notification is provided when FDICopy encounters a part of a file * contained in this cabinet which is missing its beginning. Files can be * split across cabinets, so this is not necessarily an abnormality; it just * means that the file in question begins in another cabinet. No file * corresponding to this notification is extracted from the cabinet. In the * structure pointed to by pfdin, psz1 contains a pointer to the name of the * partial file, psz2 contains a pointer to the file name of the cabinet in * which this file begins, and psz3 contains a pointer to the disk name or * "info" of the cabinet where the file begins. Return zero, or -1 to abort. * * fdintCOPY_FILE: * * This notification is provided when FDICopy encounters a file which starts * in the cabinet file, provided to FDICopy in pszCabinet. (FDICopy will not * look for files in cabinets after the first one). One notification will be * sent for each such file, before the file is decompressed. By returning * zero, the callback can instruct FDICopy to skip the file. In the structure * pointed to by pfdin, psz1 contains a pointer to the file's name, cb contains * the size of the file (uncompressed), attribs contains the file attributes, * and date and time contain the date and time of the file. attributes, date, * and time are of the 16-bit ms-dos variety. Return -1 to abort decompression * for the entire cabinet, 0 to skip just this file but continue scanning the * cabinet for more files, or an FDIClose()-compatible file-handle. * * fdintCLOSE_FILE_INFO: * * This notification is important, don't forget to implement it. This * notification indicates that a file has been successfully uncompressed and * written to disk. Upon receipt of this notification, the callee is expected * to close the file handle, to set the attributes and date/time of the * closed file, and possibly to execute the file. In the structure pointed to * by pfdin, psz1 contains a pointer to the name of the file, hf will be the * open file handle (close it), cb contains 1 or zero, indicating respectively * that the callee should or should not execute the file, and date, time * and attributes will be set as in fdintCOPY_FILE. Bizarrely, the Cabinet SDK * specifies that _A_EXEC will be xor'ed out of attributes! wine does not do * do so. Return TRUE, or FALSE to abort decompression. * * fdintNEXT_CABINET: * * This notification is called when FDICopy must load in another cabinet. This * can occur when a file's data is "split" across multiple cabinets. The * callee has the opportunity to request that FDICopy look in a different file * path for the specified cabinet file, by writing that data into a provided * buffer (see below for more information). This notification will be received * more than once per-cabinet in the instance that FDICopy failed to find a * valid cabinet at the location specified by the first per-cabinet * fdintNEXT_CABINET notification. In such instances, the fdie element of the * structure pointed to by pfdin indicates the error which prevented FDICopy * from proceeding successfully. Return zero to indicate success, or -1 to * indicate failure and abort FDICopy. * * Upon receipt of this notification, the structure pointed to by pfdin will * contain the following values: psz1 pointing to the name of the cabinet * which FDICopy is attempting to open, psz2 pointing to the name ("info") of * the next disk, psz3 pointing to the presumed file-location of the cabinet, * and fdie containing either FDIERROR_NONE, or one of the following: * * FDIERROR_CABINET_NOT_FOUND, FDIERROR_NOT_A_CABINET, * FDIERROR_UNKNOWN_CABINET_VERSION, FDIERROR_CORRUPT_CABINET, * FDIERROR_BAD_COMPR_TYPE, FDIERROR_RESERVE_MISMATCH, and * FDIERROR_WRONG_CABINET. * * The callee may choose to change the path where FDICopy will look for the * cabinet after this notification. To do so, the caller may write the new * pathname to the buffer pointed to by psz3, which is 256 characters in * length, including the terminating null character, before returning zero. * * fdintENUMERATE: * * Undocumented and unimplemented in wine, this seems to be sent each time * a cabinet is opened, along with the fdintCABINET_INFO notification. It * probably has an interface similar to that of fdintCABINET_INFO; maybe this * provides information about the current cabinet instead of the next one.... * this is just a guess, it has not been looked at closely. * * INCLUDES * fdi.c */ BOOL __cdecl FDICopy( HFDI hfdi, char *pszCabinet, char *pszCabPath, int flags, PFNFDINOTIFY pfnfdin, PFNFDIDECRYPT pfnfdid, void *pvUser) { FDICABINETINFO fdici; FDINOTIFICATION fdin; INT_PTR cabhf, filehf = 0; int idx; unsigned int i; char fullpath[MAX_PATH]; size_t pathlen, filenamelen; char emptystring = '\0'; cab_UBYTE buf[64]; struct fdi_folder *fol = NULL, *linkfol = NULL; struct fdi_file *file = NULL, *linkfile = NULL; fdi_decomp_state *decomp_state; TRACE("(hfdi == ^%p, pszCabinet == ^%p, pszCabPath == ^%p, flags == %0d, " "pfnfdin == ^%p, pfnfdid == ^%p, pvUser == ^%p)\n", hfdi, pszCabinet, pszCabPath, flags, pfnfdin, pfnfdid, pvUser); if (!REALLY_IS_FDI(hfdi)) { SetLastError(ERROR_INVALID_HANDLE); return FALSE; } if (!(decomp_state = PFDI_ALLOC(hfdi, sizeof(fdi_decomp_state)))) { SetLastError(ERROR_NOT_ENOUGH_MEMORY); return FALSE; } ZeroMemory(decomp_state, sizeof(fdi_decomp_state)); pathlen = (pszCabPath) ? strlen(pszCabPath) : 0; filenamelen = (pszCabinet) ? strlen(pszCabinet) : 0; /* slight overestimation here to save CPU cycles in the developer's brain */ if ((pathlen + filenamelen + 3) > MAX_PATH) { ERR("MAX_PATH exceeded.\n"); PFDI_FREE(hfdi, decomp_state); PFDI_INT(hfdi)->perf->erfOper = FDIERROR_CABINET_NOT_FOUND; PFDI_INT(hfdi)->perf->erfType = ERROR_FILE_NOT_FOUND; PFDI_INT(hfdi)->perf->fError = TRUE; SetLastError(ERROR_FILE_NOT_FOUND); return FALSE; } /* paste the path and filename together */ idx = 0; if (pathlen) { for (i = 0; i < pathlen; i++) fullpath[idx++] = pszCabPath[i]; if (fullpath[idx - 1] != '\\') fullpath[idx++] = '\\'; } if (filenamelen) for (i = 0; i < filenamelen; i++) fullpath[idx++] = pszCabinet[i]; fullpath[idx] = '\0'; TRACE("full cab path/file name: %s\n", debugstr_a(fullpath)); /* get a handle to the cabfile */ cabhf = PFDI_OPEN(hfdi, fullpath, _O_RDONLY|_O_BINARY, _S_IREAD | _S_IWRITE); if (cabhf == -1) { PFDI_FREE(hfdi, decomp_state); PFDI_INT(hfdi)->perf->erfOper = FDIERROR_CABINET_NOT_FOUND; PFDI_INT(hfdi)->perf->fError = TRUE; SetLastError(ERROR_FILE_NOT_FOUND); return FALSE; } if (cabhf == 0) { ERR("PFDI_OPEN returned zero for %s.\n", fullpath); PFDI_FREE(hfdi, decomp_state); PFDI_INT(hfdi)->perf->erfOper = FDIERROR_CABINET_NOT_FOUND; PFDI_INT(hfdi)->perf->erfType = ERROR_FILE_NOT_FOUND; PFDI_INT(hfdi)->perf->fError = TRUE; SetLastError(ERROR_FILE_NOT_FOUND); return FALSE; } /* check if it's really a cabfile. Note that this doesn't implement the bug */ if (!FDI_read_entries(hfdi, cabhf, &fdici, &(CAB(mii)))) { ERR("FDIIsCabinet failed.\n"); PFDI_FREE(hfdi, decomp_state); PFDI_CLOSE(hfdi, cabhf); return FALSE; } /* cabinet notification */ ZeroMemory(&fdin, sizeof(FDINOTIFICATION)); fdin.setID = fdici.setID; fdin.iCabinet = fdici.iCabinet; fdin.pv = pvUser; fdin.psz1 = (CAB(mii).nextname) ? CAB(mii).nextname : &emptystring; fdin.psz2 = (CAB(mii).nextinfo) ? CAB(mii).nextinfo : &emptystring; fdin.psz3 = pszCabPath; if (((*pfnfdin)(fdintCABINET_INFO, &fdin))) { PFDI_INT(hfdi)->perf->erfOper = FDIERROR_USER_ABORT; PFDI_INT(hfdi)->perf->erfType = 0; PFDI_INT(hfdi)->perf->fError = TRUE; goto bail_and_fail; } CAB(setID) = fdici.setID; CAB(iCabinet) = fdici.iCabinet; CAB(cabhf) = cabhf; /* read folders */ for (i = 0; i < fdici.cFolders; i++) { if (PFDI_READ(hfdi, cabhf, buf, cffold_SIZEOF) != cffold_SIZEOF) { PFDI_INT(hfdi)->perf->erfOper = FDIERROR_CORRUPT_CABINET; PFDI_INT(hfdi)->perf->erfType = 0; PFDI_INT(hfdi)->perf->fError = TRUE; goto bail_and_fail; } if (CAB(mii).folder_resv > 0) PFDI_SEEK(hfdi, cabhf, CAB(mii).folder_resv, SEEK_CUR); fol = PFDI_ALLOC(hfdi, sizeof(struct fdi_folder)); if (!fol) { ERR("out of memory!\n"); PFDI_INT(hfdi)->perf->erfOper = FDIERROR_ALLOC_FAIL; PFDI_INT(hfdi)->perf->erfType = ERROR_NOT_ENOUGH_MEMORY; PFDI_INT(hfdi)->perf->fError = TRUE; SetLastError(ERROR_NOT_ENOUGH_MEMORY); goto bail_and_fail; } ZeroMemory(fol, sizeof(struct fdi_folder)); if (!CAB(firstfol)) CAB(firstfol) = fol; fol->offset = (cab_off_t) EndGetI32(buf+cffold_DataOffset); fol->num_blocks = EndGetI16(buf+cffold_NumBlocks); fol->comp_type = EndGetI16(buf+cffold_CompType); if (linkfol) linkfol->next = fol; linkfol = fol; } /* read files */ for (i = 0; i < fdici.cFiles; i++) { if (PFDI_READ(hfdi, cabhf, buf, cffile_SIZEOF) != cffile_SIZEOF) { PFDI_INT(hfdi)->perf->erfOper = FDIERROR_CORRUPT_CABINET; PFDI_INT(hfdi)->perf->erfType = 0; PFDI_INT(hfdi)->perf->fError = TRUE; goto bail_and_fail; } file = PFDI_ALLOC(hfdi, sizeof(struct fdi_file)); if (!file) { ERR("out of memory!\n"); PFDI_INT(hfdi)->perf->erfOper = FDIERROR_ALLOC_FAIL; PFDI_INT(hfdi)->perf->erfType = ERROR_NOT_ENOUGH_MEMORY; PFDI_INT(hfdi)->perf->fError = TRUE; SetLastError(ERROR_NOT_ENOUGH_MEMORY); goto bail_and_fail; } ZeroMemory(file, sizeof(struct fdi_file)); if (!CAB(firstfile)) CAB(firstfile) = file; file->length = EndGetI32(buf+cffile_UncompressedSize); file->offset = EndGetI32(buf+cffile_FolderOffset); file->index = EndGetI16(buf+cffile_FolderIndex); file->time = EndGetI16(buf+cffile_Time); file->date = EndGetI16(buf+cffile_Date); file->attribs = EndGetI16(buf+cffile_Attribs); file->filename = FDI_read_string(hfdi, cabhf, fdici.cbCabinet); if (!file->filename) { PFDI_INT(hfdi)->perf->erfOper = FDIERROR_CORRUPT_CABINET; PFDI_INT(hfdi)->perf->erfType = 0; PFDI_INT(hfdi)->perf->fError = TRUE; goto bail_and_fail; } if (linkfile) linkfile->next = file; linkfile = file; } for (file = CAB(firstfile); (file); file = file->next) { /* * FIXME: This implementation keeps multiple cabinet files open at once * when encountering a split cabinet. It is a quirk of this implementation * that sometimes we decrypt the same block of data more than once, to find * the right starting point for a file, moving the file-pointer backwards. * If we kept a cache of certain file-pointer information, we could eliminate * that behavior... in fact I am not sure that the caching we already have * is not sufficient. * * The current implementation seems to work fine in straightforward situations * where all the cabinet files needed for decryption are simultaneously * available. But presumably, the API is supposed to support cabinets which * are split across multiple CDROMS; we may need to change our implementation * to strictly serialize it's file usage so that it opens only one cabinet * at a time. Some experimentation with Windows is needed to figure out the * precise semantics required. The relevant code is here and in fdi_decomp(). */ /* partial-file notification */ if ((file->index & cffileCONTINUED_FROM_PREV) == cffileCONTINUED_FROM_PREV) { /* * FIXME: Need to create a Cabinet with a single file spanning multiple files * and perform some tests to figure out the right behavior. The SDK says * FDICopy will notify the user of the filename and "disk name" (info) of * the cabinet where the spanning file /started/. * * That would certainly be convenient for the API-user, who could abort, * everything (or parallelize, if that's allowed (it is in wine)), and call * FDICopy again with the provided filename, so as to avoid partial file * notification and successfully unpack. This task could be quite unpleasant * from wine's perspective: the information specifying the "start cabinet" for * a file is associated nowhere with the file header and is not to be found in * the cabinet header. We have only the index of the cabinet wherein the folder * begins, which contains the file. To find that cabinet, we must consider the * index of the current cabinet, and chain backwards, cabinet-by-cabinet (for * each cabinet refers to its "next" and "previous" cabinet only, like a linked * list). * * Bear in mind that, in the spirit of CABINET.DLL, we must assume that any * cabinet other than the active one might be at another filepath than the * current one, or on another CDROM. This could get rather dicey, especially * if we imagine parallelized access to the FDICopy API. * * The current implementation punts -- it just returns the previous cabinet and * it's info from the header of this cabinet. This provides the right answer in * 95% of the cases; its worth checking if Microsoft cuts the same corner before * we "fix" it. */ ZeroMemory(&fdin, sizeof(FDINOTIFICATION)); fdin.pv = pvUser; fdin.psz1 = (char *)file->filename; fdin.psz2 = (CAB(mii).prevname) ? CAB(mii).prevname : &emptystring; fdin.psz3 = (CAB(mii).previnfo) ? CAB(mii).previnfo : &emptystring; if (((*pfnfdin)(fdintPARTIAL_FILE, &fdin))) { PFDI_INT(hfdi)->perf->erfOper = FDIERROR_USER_ABORT; PFDI_INT(hfdi)->perf->erfType = 0; PFDI_INT(hfdi)->perf->fError = TRUE; goto bail_and_fail; } /* I don't think we are supposed to decompress partial files. This prevents it. */ file->oppressed = TRUE; } if (file->oppressed) { filehf = 0; } else { ZeroMemory(&fdin, sizeof(FDINOTIFICATION)); fdin.pv = pvUser; fdin.psz1 = (char *)file->filename; fdin.cb = file->length; fdin.date = file->date; fdin.time = file->time; fdin.attribs = file->attribs; if ((filehf = ((*pfnfdin)(fdintCOPY_FILE, &fdin))) == -1) { PFDI_INT(hfdi)->perf->erfOper = FDIERROR_USER_ABORT; PFDI_INT(hfdi)->perf->erfType = 0; PFDI_INT(hfdi)->perf->fError = TRUE; filehf = 0; goto bail_and_fail; } } /* find the folder for this file if necc. */ if (filehf) { int i2; fol = CAB(firstfol); if ((file->index & cffileCONTINUED_TO_NEXT) == cffileCONTINUED_TO_NEXT) { /* pick the last folder */ while (fol->next) fol = fol->next; } else { for (i2 = 0; (i2 < file->index); i2++) if (fol->next) /* bug resistance, should always be true */ fol = fol->next; } } if (filehf) { cab_UWORD comptype = fol->comp_type; int ct1 = comptype & cffoldCOMPTYPE_MASK; int ct2 = CAB(current) ? (CAB(current)->comp_type & cffoldCOMPTYPE_MASK) : 0; int err = 0; TRACE("Extracting file %s as requested by callee.\n", debugstr_a(file->filename)); /* set up decomp_state */ CAB(hfdi) = hfdi; CAB(filehf) = filehf; /* Was there a change of folder? Compression type? Did we somehow go backwards? */ if ((ct1 != ct2) || (CAB(current) != fol) || (file->offset < CAB(offset))) { TRACE("Resetting folder for file %s.\n", debugstr_a(file->filename)); /* free stuff for the old decompresser */ switch (ct2) { case cffoldCOMPTYPE_LZX: if (LZX(window)) { PFDI_FREE(hfdi, LZX(window)); LZX(window) = NULL; } break; case cffoldCOMPTYPE_QUANTUM: if (QTM(window)) { PFDI_FREE(hfdi, QTM(window)); QTM(window) = NULL; } break; } CAB(decomp_cab) = NULL; PFDI_SEEK(CAB(hfdi), CAB(cabhf), fol->offset, SEEK_SET); CAB(offset) = 0; CAB(outlen) = 0; /* initialize the new decompresser */ switch (ct1) { case cffoldCOMPTYPE_NONE: CAB(decompress) = NONEfdi_decomp; break; case cffoldCOMPTYPE_MSZIP: CAB(decompress) = ZIPfdi_decomp; break; case cffoldCOMPTYPE_QUANTUM: CAB(decompress) = QTMfdi_decomp; err = QTMfdi_init((comptype >> 8) & 0x1f, (comptype >> 4) & 0xF, decomp_state); break; case cffoldCOMPTYPE_LZX: CAB(decompress) = LZXfdi_decomp; err = LZXfdi_init((comptype >> 8) & 0x1f, decomp_state); break; default: err = DECR_DATAFORMAT; } } CAB(current) = fol; switch (err) { case DECR_OK: break; case DECR_NOMEMORY: PFDI_INT(hfdi)->perf->erfOper = FDIERROR_ALLOC_FAIL; PFDI_INT(hfdi)->perf->erfType = ERROR_NOT_ENOUGH_MEMORY; PFDI_INT(hfdi)->perf->fError = TRUE; SetLastError(ERROR_NOT_ENOUGH_MEMORY); goto bail_and_fail; default: PFDI_INT(hfdi)->perf->erfOper = FDIERROR_CORRUPT_CABINET; PFDI_INT(hfdi)->perf->erfOper = 0; PFDI_INT(hfdi)->perf->fError = TRUE; goto bail_and_fail; } if (file->offset > CAB(offset)) { /* decode bytes and send them to /dev/null */ switch (fdi_decomp(file, 0, decomp_state, pszCabPath, pfnfdin, pvUser)) { case DECR_OK: break; case DECR_USERABORT: PFDI_INT(hfdi)->perf->erfOper = FDIERROR_USER_ABORT; PFDI_INT(hfdi)->perf->erfType = 0; PFDI_INT(hfdi)->perf->fError = TRUE; goto bail_and_fail; case DECR_NOMEMORY: PFDI_INT(hfdi)->perf->erfOper = FDIERROR_ALLOC_FAIL; PFDI_INT(hfdi)->perf->erfType = ERROR_NOT_ENOUGH_MEMORY; PFDI_INT(hfdi)->perf->fError = TRUE; SetLastError(ERROR_NOT_ENOUGH_MEMORY); goto bail_and_fail; default: PFDI_INT(hfdi)->perf->erfOper = FDIERROR_CORRUPT_CABINET; PFDI_INT(hfdi)->perf->erfOper = 0; PFDI_INT(hfdi)->perf->fError = TRUE; goto bail_and_fail; } CAB(offset) = file->offset; } /* now do the actual decompression */ err = fdi_decomp(file, 1, decomp_state, pszCabPath, pfnfdin, pvUser); if (err) CAB(current) = NULL; else CAB(offset) += file->length; /* fdintCLOSE_FILE_INFO notification */ ZeroMemory(&fdin, sizeof(FDINOTIFICATION)); fdin.pv = pvUser; fdin.psz1 = (char *)file->filename; fdin.hf = filehf; fdin.cb = (file->attribs & cffile_A_EXEC) ? TRUE : FALSE; /* FIXME: is that right? */ fdin.date = file->date; fdin.time = file->time; fdin.attribs = file->attribs; /* FIXME: filter _A_EXEC? */ ((*pfnfdin)(fdintCLOSE_FILE_INFO, &fdin)); filehf = 0; switch (err) { case DECR_OK: break; case DECR_USERABORT: PFDI_INT(hfdi)->perf->erfOper = FDIERROR_USER_ABORT; PFDI_INT(hfdi)->perf->erfType = 0; PFDI_INT(hfdi)->perf->fError = TRUE; goto bail_and_fail; case DECR_NOMEMORY: PFDI_INT(hfdi)->perf->erfOper = FDIERROR_ALLOC_FAIL; PFDI_INT(hfdi)->perf->erfType = ERROR_NOT_ENOUGH_MEMORY; PFDI_INT(hfdi)->perf->fError = TRUE; SetLastError(ERROR_NOT_ENOUGH_MEMORY); goto bail_and_fail; default: PFDI_INT(hfdi)->perf->erfOper = FDIERROR_CORRUPT_CABINET; PFDI_INT(hfdi)->perf->erfOper = 0; PFDI_INT(hfdi)->perf->fError = TRUE; goto bail_and_fail; } } } free_decompression_temps(hfdi, fol, decomp_state); free_decompression_mem(hfdi, decomp_state, file); return TRUE; bail_and_fail: /* here we free ram before error returns */ if (fol) free_decompression_temps(hfdi, fol, decomp_state); if (filehf) PFDI_CLOSE(hfdi, filehf); free_decompression_mem(hfdi, decomp_state, file); return FALSE; } /*********************************************************************** * FDIDestroy (CABINET.23) * * Frees a handle created by FDICreate. Do /not/ call this in the middle * of FDICopy. Only reason for failure would be an invalid handle. * * PARAMS * hfdi [I] The HFDI to free * * RETURNS * TRUE for success * FALSE for failure */ BOOL __cdecl FDIDestroy(HFDI hfdi) { TRACE("(hfdi == ^%p)\n", hfdi); if (REALLY_IS_FDI(hfdi)) { PFDI_INT(hfdi)->FDI_Intmagic = 0; /* paranoia */ PFDI_FREE(hfdi, hfdi); /* confusing, but correct */ return TRUE; } else { SetLastError(ERROR_INVALID_HANDLE); return FALSE; } } /*********************************************************************** * FDITruncateCabinet (CABINET.24) * * Removes all folders of a cabinet file after and including the * specified folder number. * * PARAMS * hfdi [I] Handle to the FDI context. * pszCabinetName [I] Filename of the cabinet. * iFolderToDelete [I] Index of the first folder to delete. * * RETURNS * Success: TRUE. * Failure: FALSE. * * NOTES * The PFNWRITE function supplied to FDICreate must truncate the * file at the current position if the number of bytes to write is 0. */ BOOL __cdecl FDITruncateCabinet( HFDI hfdi, char *pszCabinetName, USHORT iFolderToDelete) { FIXME("(hfdi == ^%p, pszCabinetName == %s, iFolderToDelete == %hu): stub\n", hfdi, debugstr_a(pszCabinetName), iFolderToDelete); if (!REALLY_IS_FDI(hfdi)) { SetLastError(ERROR_INVALID_HANDLE); return FALSE; } SetLastError(ERROR_CALL_NOT_IMPLEMENTED); return FALSE; }