/* * File cpu_x86_64.c * * Copyright (C) 1999, 2005 Alexandre Julliard * Copyright (C) 2009, 2011 Eric Pouech. * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA */ #include <assert.h> #define NONAMELESSUNION #define NONAMELESSSTRUCT #include "ntstatus.h" #define WIN32_NO_STATUS #include "dbghelp_private.h" #include "winternl.h" #include "wine/debug.h" WINE_DEFAULT_DEBUG_CHANNEL(dbghelp); /* x86-64 unwind information, for PE modules, as described on MSDN */ typedef enum _UNWIND_OP_CODES { UWOP_PUSH_NONVOL = 0, UWOP_ALLOC_LARGE, UWOP_ALLOC_SMALL, UWOP_SET_FPREG, UWOP_SAVE_NONVOL, UWOP_SAVE_NONVOL_FAR, UWOP_SAVE_XMM128, UWOP_SAVE_XMM128_FAR, UWOP_PUSH_MACHFRAME } UNWIND_CODE_OPS; typedef union _UNWIND_CODE { struct { BYTE CodeOffset; BYTE UnwindOp : 4; BYTE OpInfo : 4; } u; USHORT FrameOffset; } UNWIND_CODE, *PUNWIND_CODE; typedef struct _UNWIND_INFO { BYTE Version : 3; BYTE Flags : 5; BYTE SizeOfProlog; BYTE CountOfCodes; BYTE FrameRegister : 4; BYTE FrameOffset : 4; UNWIND_CODE UnwindCode[1]; /* actually CountOfCodes (aligned) */ /* * union * { * OPTIONAL ULONG ExceptionHandler; * OPTIONAL ULONG FunctionEntry; * }; * OPTIONAL ULONG ExceptionData[]; */ } UNWIND_INFO, *PUNWIND_INFO; static BOOL x86_64_get_addr(HANDLE hThread, const CONTEXT* ctx, enum cpu_addr ca, ADDRESS64* addr) { addr->Mode = AddrModeFlat; switch (ca) { #ifdef __x86_64__ case cpu_addr_pc: addr->Segment = ctx->SegCs; addr->Offset = ctx->Rip; return TRUE; case cpu_addr_stack: addr->Segment = ctx->SegSs; addr->Offset = ctx->Rsp; return TRUE; case cpu_addr_frame: addr->Segment = ctx->SegSs; addr->Offset = ctx->Rbp; return TRUE; #endif default: addr->Mode = -1; return FALSE; } } #ifdef __x86_64__ enum st_mode {stm_start, stm_64bit, stm_done}; /* indexes in Reserved array */ #define __CurrentMode 0 #define __CurrentCount 1 /* #define __ 2 (unused) */ #define curr_mode (frame->Reserved[__CurrentMode]) #define curr_count (frame->Reserved[__CurrentCount]) /* #define ??? (frame->Reserved[__]) (unused) */ union handler_data { RUNTIME_FUNCTION chain; ULONG handler; }; static void dump_unwind_info(struct cpu_stack_walk* csw, ULONG64 base, RUNTIME_FUNCTION *function) { static const char * const reg_names[16] = { "rax", "rcx", "rdx", "rbx", "rsp", "rbp", "rsi", "rdi", "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15" }; union handler_data handler_data; char buffer[sizeof(UNWIND_INFO) + 256 * sizeof(UNWIND_CODE)]; UNWIND_INFO* info = (UNWIND_INFO*)buffer; unsigned int i, count; RUNTIME_FUNCTION snext; ULONG64 addr; TRACE("**** func %x-%x\n", function->BeginAddress, function->EndAddress); for (;;) { if (function->UnwindData & 1) { if (!sw_read_mem(csw, base + function->UnwindData, &snext, sizeof(snext))) { TRACE("Couldn't unwind RUNTIME_INFO at %lx\n", base + function->UnwindData); return; } TRACE("unwind info for function %p-%p chained to function %p-%p\n", (char*)base + function->BeginAddress, (char*)base + function->EndAddress, (char*)base + snext.BeginAddress, (char*)base + snext.EndAddress); function = &snext; continue; } addr = base + function->UnwindData; if (!sw_read_mem(csw, addr, info, FIELD_OFFSET(UNWIND_INFO, UnwindCode)) || !sw_read_mem(csw, addr + FIELD_OFFSET(UNWIND_INFO, UnwindCode), info->UnwindCode, info->CountOfCodes * sizeof(UNWIND_CODE))) { FIXME("couldn't read memory for UNWIND_INFO at %lx\n", addr); return; } TRACE("unwind info at %p flags %x prolog 0x%x bytes function %p-%p\n", (char*)addr, info->Flags, info->SizeOfProlog, (char*)base + function->BeginAddress, (char*)base + function->EndAddress); if (info->FrameRegister) TRACE(" frame register %s offset 0x%x(%%rsp)\n", reg_names[info->FrameRegister], info->FrameOffset * 16); for (i = 0; i < info->CountOfCodes; i++) { TRACE(" 0x%x: ", info->UnwindCode[i].u.CodeOffset); switch (info->UnwindCode[i].u.UnwindOp) { case UWOP_PUSH_NONVOL: TRACE("pushq %%%s\n", reg_names[info->UnwindCode[i].u.OpInfo]); break; case UWOP_ALLOC_LARGE: if (info->UnwindCode[i].u.OpInfo) { count = *(DWORD*)&info->UnwindCode[i+1]; i += 2; } else { count = *(USHORT*)&info->UnwindCode[i+1] * 8; i++; } TRACE("subq $0x%x,%%rsp\n", count); break; case UWOP_ALLOC_SMALL: count = (info->UnwindCode[i].u.OpInfo + 1) * 8; TRACE("subq $0x%x,%%rsp\n", count); break; case UWOP_SET_FPREG: TRACE("leaq 0x%x(%%rsp),%s\n", info->FrameOffset * 16, reg_names[info->FrameRegister]); break; case UWOP_SAVE_NONVOL: count = *(USHORT*)&info->UnwindCode[i+1] * 8; TRACE("movq %%%s,0x%x(%%rsp)\n", reg_names[info->UnwindCode[i].u.OpInfo], count); i++; break; case UWOP_SAVE_NONVOL_FAR: count = *(DWORD*)&info->UnwindCode[i+1]; TRACE("movq %%%s,0x%x(%%rsp)\n", reg_names[info->UnwindCode[i].u.OpInfo], count); i += 2; break; case UWOP_SAVE_XMM128: count = *(USHORT*)&info->UnwindCode[i+1] * 16; TRACE("movaps %%xmm%u,0x%x(%%rsp)\n", info->UnwindCode[i].u.OpInfo, count); i++; break; case UWOP_SAVE_XMM128_FAR: count = *(DWORD*)&info->UnwindCode[i+1]; TRACE("movaps %%xmm%u,0x%x(%%rsp)\n", info->UnwindCode[i].u.OpInfo, count); i += 2; break; case UWOP_PUSH_MACHFRAME: TRACE("PUSH_MACHFRAME %u\n", info->UnwindCode[i].u.OpInfo); break; default: FIXME("unknown code %u\n", info->UnwindCode[i].u.UnwindOp); break; } } addr += FIELD_OFFSET(UNWIND_INFO, UnwindCode) + ((info->CountOfCodes + 1) & ~1) * sizeof(UNWIND_CODE); if (info->Flags & UNW_FLAG_CHAININFO) { if (!sw_read_mem(csw, addr, &handler_data, sizeof(handler_data.chain))) { FIXME("couldn't read memory for handler_data.chain\n"); return; } TRACE(" chained to function %p-%p\n", (char*)base + handler_data.chain.BeginAddress, (char*)base + handler_data.chain.EndAddress); function = &handler_data.chain; continue; } if (info->Flags & (UNW_FLAG_EHANDLER | UNW_FLAG_UHANDLER)) { if (!sw_read_mem(csw, addr, &handler_data, sizeof(handler_data.handler))) { FIXME("couldn't read memory for handler_data.handler\n"); return; } TRACE(" handler %p data at %p\n", (char*)base + handler_data.handler, (char*)addr + sizeof(handler_data.handler)); } break; } } /* highly derived from dlls/ntdll/signal_x86_64.c */ static ULONG64 get_int_reg(CONTEXT *context, int reg) { return *(&context->Rax + reg); } static void set_int_reg(CONTEXT *context, int reg, ULONG64 val) { *(&context->Rax + reg) = val; } static void set_float_reg(CONTEXT *context, int reg, M128A val) { *(&context->u.s.Xmm0 + reg) = val; } static int get_opcode_size(UNWIND_CODE op) { switch (op.u.UnwindOp) { case UWOP_ALLOC_LARGE: return 2 + (op.u.OpInfo != 0); case UWOP_SAVE_NONVOL: case UWOP_SAVE_XMM128: return 2; case UWOP_SAVE_NONVOL_FAR: case UWOP_SAVE_XMM128_FAR: return 3; default: return 1; } } static BOOL is_inside_epilog(struct cpu_stack_walk* csw, DWORD64 pc, DWORD64 base, const RUNTIME_FUNCTION *function ) { BYTE op0, op1, op2; LONG val32; if (!sw_read_mem(csw, pc, &op0, 1)) return FALSE; /* add or lea must be the first instruction, and it must have a rex.W prefix */ if ((op0 & 0xf8) == 0x48) { if (!sw_read_mem(csw, pc + 1, &op1, 1)) return FALSE; switch (op1) { case 0x81: /* add $nnnn,%rsp */ if (!sw_read_mem(csw, pc + 2, &op2, 1)) return FALSE; if (op0 == 0x48 && op2 == 0xc4) { pc += 7; break; } return FALSE; case 0x83: /* add $n,%rsp */ if (!sw_read_mem(csw, pc + 2, &op2, 1)) return FALSE; if (op0 == 0x48 && op2 == 0xc4) { pc += 4; break; } return FALSE; case 0x8d: /* lea n(reg),%rsp */ if (!sw_read_mem(csw, pc + 2, &op2, 1)) return FALSE; if (op0 & 0x06) return FALSE; /* rex.RX must be cleared */ if (((op2 >> 3) & 7) != 4) return FALSE; /* dest reg mus be %rsp */ if ((op2 & 7) == 4) return FALSE; /* no SIB byte allowed */ if ((op2 >> 6) == 1) /* 8-bit offset */ { pc += 4; break; } if ((op2 >> 6) == 2) /* 32-bit offset */ { pc += 7; break; } return FALSE; } } /* now check for various pop instructions */ for (;;) { if (!sw_read_mem(csw, pc, &op0, 1)) return FALSE; if ((op0 & 0xf0) == 0x40) /* rex prefix */ { if (!sw_read_mem(csw, ++pc, &op0, 1)) return FALSE; } switch (op0) { case 0x58: /* pop %rax/%r8 */ case 0x59: /* pop %rcx/%r9 */ case 0x5a: /* pop %rdx/%r10 */ case 0x5b: /* pop %rbx/%r11 */ case 0x5c: /* pop %rsp/%r12 */ case 0x5d: /* pop %rbp/%r13 */ case 0x5e: /* pop %rsi/%r14 */ case 0x5f: /* pop %rdi/%r15 */ pc++; continue; case 0xc2: /* ret $nn */ case 0xc3: /* ret */ return TRUE; case 0xe9: /* jmp nnnn */ if (!sw_read_mem(csw, pc + 1, &val32, sizeof(LONG))) return FALSE; pc += 5 + val32; if (pc - base >= function->BeginAddress && pc - base < function->EndAddress) continue; break; case 0xeb: /* jmp n */ if (!sw_read_mem(csw, pc + 1, &op1, 1)) return FALSE; pc += 2 + (signed char)op1; if (pc - base >= function->BeginAddress && pc - base < function->EndAddress) continue; break; case 0xf3: /* rep; ret (for amd64 prediction bug) */ if (!sw_read_mem(csw, pc + 1, &op1, 1)) return FALSE; return op1 == 0xc3; } return FALSE; } } static BOOL interpret_epilog(struct cpu_stack_walk* csw, ULONG64 pc, CONTEXT *context ) { BYTE insn, val8; WORD val16; LONG val32; DWORD64 val64; for (;;) { BYTE rex = 0; if (!sw_read_mem(csw, pc, &insn, 1)) return FALSE; if ((insn & 0xf0) == 0x40) { rex = insn & 0x0f; /* rex prefix */ if (!sw_read_mem(csw, ++pc, &insn, 1)) return FALSE; } switch (insn) { case 0x58: /* pop %rax/r8 */ case 0x59: /* pop %rcx/r9 */ case 0x5a: /* pop %rdx/r10 */ case 0x5b: /* pop %rbx/r11 */ case 0x5c: /* pop %rsp/r12 */ case 0x5d: /* pop %rbp/r13 */ case 0x5e: /* pop %rsi/r14 */ case 0x5f: /* pop %rdi/r15 */ if (!sw_read_mem(csw, context->Rsp, &val64, sizeof(DWORD64))) return FALSE; set_int_reg(context, insn - 0x58 + (rex & 1) * 8, val64); context->Rsp += sizeof(ULONG64); pc++; continue; case 0x81: /* add $nnnn,%rsp */ if (!sw_read_mem(csw, pc + 2, &val32, sizeof(LONG))) return FALSE; context->Rsp += val32; pc += 2 + sizeof(LONG); continue; case 0x83: /* add $n,%rsp */ if (!sw_read_mem(csw, pc + 2, &val8, sizeof(BYTE))) return FALSE; context->Rsp += (signed char)val8; pc += 3; continue; case 0x8d: if (!sw_read_mem(csw, pc + 1, &insn, sizeof(BYTE))) return FALSE; if ((insn >> 6) == 1) /* lea n(reg),%rsp */ { if (!sw_read_mem(csw, pc + 2, &val8, sizeof(BYTE))) return FALSE; context->Rsp = get_int_reg( context, (insn & 7) + (rex & 1) * 8 ) + (signed char)val8; pc += 3; } else /* lea nnnn(reg),%rsp */ { if (!sw_read_mem(csw, pc + 2, &val32, sizeof(LONG))) return FALSE; context->Rsp = get_int_reg( context, (insn & 7) + (rex & 1) * 8 ) + val32; pc += 2 + sizeof(LONG); } continue; case 0xc2: /* ret $nn */ if (!sw_read_mem(csw, context->Rsp, &val64, sizeof(DWORD64))) return FALSE; if (!sw_read_mem(csw, pc + 1, &val16, sizeof(WORD))) return FALSE; context->Rip = val64; context->Rsp += sizeof(ULONG64) + val16; return TRUE; case 0xc3: /* ret */ case 0xf3: /* rep; ret */ if (!sw_read_mem(csw, context->Rsp, &val64, sizeof(DWORD64))) return FALSE; context->Rip = val64; context->Rsp += sizeof(ULONG64); return TRUE; case 0xe9: /* jmp nnnn */ if (!sw_read_mem(csw, pc + 1, &val32, sizeof(LONG))) return FALSE; pc += 5 + val32; continue; case 0xeb: /* jmp n */ if (!sw_read_mem(csw, pc + 1, &val8, sizeof(BYTE))) return FALSE; pc += 2 + (signed char)val8; continue; } FIXME("unsupported insn %x\n", insn); return FALSE; } } static BOOL default_unwind(struct cpu_stack_walk* csw, CONTEXT* context) { if (!sw_read_mem(csw, context->Rsp, &context->Rip, sizeof(DWORD64))) { WARN("Cannot read new frame offset %s\n", wine_dbgstr_longlong(context->Rsp)); return FALSE; } context->Rsp += sizeof(DWORD64); return TRUE; } static BOOL interpret_function_table_entry(struct cpu_stack_walk* csw, CONTEXT* context, RUNTIME_FUNCTION* function, DWORD64 base) { char buffer[sizeof(UNWIND_INFO) + 256 * sizeof(UNWIND_CODE)]; UNWIND_INFO* info = (UNWIND_INFO*)buffer; unsigned i; DWORD64 newframe, prolog_offset, off, value; M128A floatvalue; union handler_data handler_data; /* FIXME: we have some assumptions here */ assert(context); dump_unwind_info(csw, sw_module_base(csw, context->Rip), function); newframe = context->Rsp; for (;;) { if (!sw_read_mem(csw, base + function->UnwindData, info, sizeof(*info)) || !sw_read_mem(csw, base + function->UnwindData + FIELD_OFFSET(UNWIND_INFO, UnwindCode), info->UnwindCode, info->CountOfCodes * sizeof(UNWIND_CODE))) { WARN("Couldn't read unwind_code at %lx\n", base + function->UnwindData); return FALSE; } if (info->Version != 1) { WARN("unknown unwind info version %u at %lx\n", info->Version, base + function->UnwindData); return FALSE; } if (info->FrameRegister) newframe = get_int_reg(context, info->FrameRegister) - info->FrameOffset * 16; /* check if in prolog */ if (context->Rip >= base + function->BeginAddress && context->Rip < base + function->BeginAddress + info->SizeOfProlog) { prolog_offset = context->Rip - base - function->BeginAddress; } else { prolog_offset = ~0; if (is_inside_epilog(csw, context->Rip, base, function)) { interpret_epilog(csw, context->Rip, context); return TRUE; } } for (i = 0; i < info->CountOfCodes; i += get_opcode_size(info->UnwindCode[i])) { if (prolog_offset < info->UnwindCode[i].u.CodeOffset) continue; /* skip it */ switch (info->UnwindCode[i].u.UnwindOp) { case UWOP_PUSH_NONVOL: /* pushq %reg */ if (!sw_read_mem(csw, context->Rsp, &value, sizeof(DWORD64))) return FALSE; set_int_reg(context, info->UnwindCode[i].u.OpInfo, value); context->Rsp += sizeof(ULONG64); break; case UWOP_ALLOC_LARGE: /* subq $nn,%rsp */ if (info->UnwindCode[i].u.OpInfo) context->Rsp += *(DWORD*)&info->UnwindCode[i+1]; else context->Rsp += *(USHORT*)&info->UnwindCode[i+1] * 8; break; case UWOP_ALLOC_SMALL: /* subq $n,%rsp */ context->Rsp += (info->UnwindCode[i].u.OpInfo + 1) * 8; break; case UWOP_SET_FPREG: /* leaq nn(%rsp),%framereg */ context->Rsp = newframe; break; case UWOP_SAVE_NONVOL: /* movq %reg,n(%rsp) */ off = newframe + *(USHORT*)&info->UnwindCode[i+1] * 8; if (!sw_read_mem(csw, off, &value, sizeof(DWORD64))) return FALSE; set_int_reg(context, info->UnwindCode[i].u.OpInfo, value); break; case UWOP_SAVE_NONVOL_FAR: /* movq %reg,nn(%rsp) */ off = newframe + *(DWORD*)&info->UnwindCode[i+1]; if (!sw_read_mem(csw, off, &value, sizeof(DWORD64))) return FALSE; set_int_reg(context, info->UnwindCode[i].u.OpInfo, value); break; case UWOP_SAVE_XMM128: /* movaps %xmmreg,n(%rsp) */ off = newframe + *(USHORT*)&info->UnwindCode[i+1] * 16; if (!sw_read_mem(csw, off, &floatvalue, sizeof(M128A))) return FALSE; set_float_reg(context, info->UnwindCode[i].u.OpInfo, floatvalue); break; case UWOP_SAVE_XMM128_FAR: /* movaps %xmmreg,nn(%rsp) */ off = newframe + *(DWORD*)&info->UnwindCode[i+1]; if (!sw_read_mem(csw, off, &floatvalue, sizeof(M128A))) return FALSE; set_float_reg(context, info->UnwindCode[i].u.OpInfo, floatvalue); break; case UWOP_PUSH_MACHFRAME: FIXME("PUSH_MACHFRAME %u\n", info->UnwindCode[i].u.OpInfo); break; default: FIXME("unknown code %u\n", info->UnwindCode[i].u.UnwindOp); break; } } if (!(info->Flags & UNW_FLAG_CHAININFO)) break; if (!sw_read_mem(csw, base + function->UnwindData + FIELD_OFFSET(UNWIND_INFO, UnwindCode) + ((info->CountOfCodes + 1) & ~1) * sizeof(UNWIND_CODE), &handler_data, sizeof(handler_data))) return FALSE; function = &handler_data.chain; /* restart with the chained info */ } return default_unwind(csw, context); } /* fetch_next_frame() * * modify (at least) context.{rip, rsp, rbp} using unwind information * either out of PE exception handlers, debug info (dwarf), or simple stack unwind */ static BOOL fetch_next_frame(struct cpu_stack_walk *csw, union ctx *pcontext, DWORD_PTR curr_pc, void** prtf) { DWORD64 cfa; RUNTIME_FUNCTION* rtf; DWORD64 base; CONTEXT *context = &pcontext->ctx; if (!curr_pc || !(base = sw_module_base(csw, curr_pc))) return FALSE; rtf = sw_table_access(csw, curr_pc); if (prtf) *prtf = rtf; if (rtf) { return interpret_function_table_entry(csw, context, rtf, base); } else if (dwarf2_virtual_unwind(csw, curr_pc, pcontext, &cfa)) { context->Rsp = cfa; TRACE("next function rip=%016lx\n", context->Rip); TRACE(" rax=%016lx rbx=%016lx rcx=%016lx rdx=%016lx\n", context->Rax, context->Rbx, context->Rcx, context->Rdx); TRACE(" rsi=%016lx rdi=%016lx rbp=%016lx rsp=%016lx\n", context->Rsi, context->Rdi, context->Rbp, context->Rsp); TRACE(" r8=%016lx r9=%016lx r10=%016lx r11=%016lx\n", context->R8, context->R9, context->R10, context->R11); TRACE(" r12=%016lx r13=%016lx r14=%016lx r15=%016lx\n", context->R12, context->R13, context->R14, context->R15); return TRUE; } else return default_unwind(csw, context); } static BOOL x86_64_stack_walk(struct cpu_stack_walk *csw, STACKFRAME64 *frame, union ctx *context) { unsigned deltapc = curr_count <= 1 ? 0 : 1; /* sanity check */ if (curr_mode >= stm_done) return FALSE; assert(!csw->is32); TRACE("Enter: PC=%s Frame=%s Return=%s Stack=%s Mode=%s Count=%s\n", wine_dbgstr_addr(&frame->AddrPC), wine_dbgstr_addr(&frame->AddrFrame), wine_dbgstr_addr(&frame->AddrReturn), wine_dbgstr_addr(&frame->AddrStack), curr_mode == stm_start ? "start" : "64bit", wine_dbgstr_longlong(curr_count)); if (curr_mode == stm_start) { if ((frame->AddrPC.Mode == AddrModeFlat) && (frame->AddrFrame.Mode != AddrModeFlat)) { WARN("Bad AddrPC.Mode / AddrFrame.Mode combination\n"); goto done_err; } /* Init done */ curr_mode = stm_64bit; frame->AddrReturn.Mode = frame->AddrStack.Mode = AddrModeFlat; /* don't set up AddrStack on first call. Either the caller has set it up, or * we will get it in the next frame */ memset(&frame->AddrBStore, 0, sizeof(frame->AddrBStore)); } else { if (context->ctx.Rsp != frame->AddrStack.Offset) FIXME("inconsistent Stack Pointer\n"); if (context->ctx.Rip != frame->AddrPC.Offset) FIXME("inconsistent Instruction Pointer\n"); if (frame->AddrReturn.Offset == 0) goto done_err; if (!fetch_next_frame(csw, context, frame->AddrPC.Offset - deltapc, &frame->FuncTableEntry)) goto done_err; deltapc = 1; } memset(&frame->Params, 0, sizeof(frame->Params)); /* set frame information */ frame->AddrStack.Offset = context->ctx.Rsp; frame->AddrFrame.Offset = context->ctx.Rbp; frame->AddrPC.Offset = context->ctx.Rip; if (1) { union ctx newctx = *context; if (!fetch_next_frame(csw, &newctx, frame->AddrPC.Offset - deltapc, NULL)) goto done_err; frame->AddrReturn.Mode = AddrModeFlat; frame->AddrReturn.Offset = newctx.ctx.Rip; } frame->Far = TRUE; frame->Virtual = TRUE; curr_count++; TRACE("Leave: PC=%s Frame=%s Return=%s Stack=%s Mode=%s Count=%s FuncTable=%p\n", wine_dbgstr_addr(&frame->AddrPC), wine_dbgstr_addr(&frame->AddrFrame), wine_dbgstr_addr(&frame->AddrReturn), wine_dbgstr_addr(&frame->AddrStack), curr_mode == stm_start ? "start" : "64bit", wine_dbgstr_longlong(curr_count), frame->FuncTableEntry); return TRUE; done_err: curr_mode = stm_done; return FALSE; } #else static BOOL x86_64_stack_walk(struct cpu_stack_walk *csw, STACKFRAME64 *frame, union ctx *ctx) { return FALSE; } #endif static void* x86_64_find_runtime_function(struct module* module, DWORD64 addr) { #ifdef __x86_64__ RUNTIME_FUNCTION* rtf; ULONG size; int min, max; rtf = (RUNTIME_FUNCTION*)pe_map_directory(module, IMAGE_DIRECTORY_ENTRY_EXCEPTION, &size); if (rtf) for (min = 0, max = size / sizeof(*rtf); min <= max; ) { int pos = (min + max) / 2; if (addr < module->module.BaseOfImage + rtf[pos].BeginAddress) max = pos - 1; else if (addr >= module->module.BaseOfImage + rtf[pos].EndAddress) min = pos + 1; else { rtf += pos; while (rtf->UnwindData & 1) /* follow chained entry */ { FIXME("RunTime_Function outside IMAGE_DIRECTORY_ENTRY_EXCEPTION unimplemented yet!\n"); return NULL; /* we need to read into the other process */ /* rtf = (RUNTIME_FUNCTION*)(module->module.BaseOfImage + (rtf->UnwindData & ~1)); */ } return rtf; } } #endif return NULL; } static unsigned x86_64_map_dwarf_register(unsigned regno, BOOL eh_frame) { unsigned reg; if (regno >= 17 && regno <= 24) reg = CV_AMD64_XMM0 + regno - 17; else if (regno >= 25 && regno <= 32) reg = CV_AMD64_XMM8 + regno - 25; else if (regno >= 33 && regno <= 40) reg = CV_AMD64_ST0 + regno - 33; else switch (regno) { case 0: reg = CV_AMD64_RAX; break; case 1: reg = CV_AMD64_RDX; break; case 2: reg = CV_AMD64_RCX; break; case 3: reg = CV_AMD64_RBX; break; case 4: reg = CV_AMD64_RSI; break; case 5: reg = CV_AMD64_RDI; break; case 6: reg = CV_AMD64_RBP; break; case 7: reg = CV_AMD64_RSP; break; case 8: reg = CV_AMD64_R8; break; case 9: reg = CV_AMD64_R9; break; case 10: reg = CV_AMD64_R10; break; case 11: reg = CV_AMD64_R11; break; case 12: reg = CV_AMD64_R12; break; case 13: reg = CV_AMD64_R13; break; case 14: reg = CV_AMD64_R14; break; case 15: reg = CV_AMD64_R15; break; case 16: reg = CV_AMD64_RIP; break; case 49: reg = CV_AMD64_EFLAGS; break; case 50: reg = CV_AMD64_ES; break; case 51: reg = CV_AMD64_CS; break; case 52: reg = CV_AMD64_SS; break; case 53: reg = CV_AMD64_DS; break; case 54: reg = CV_AMD64_FS; break; case 55: reg = CV_AMD64_GS; break; case 62: reg = CV_AMD64_TR; break; case 63: reg = CV_AMD64_LDTR; break; case 64: reg = CV_AMD64_MXCSR; break; case 65: reg = CV_AMD64_CTRL; break; case 66: reg = CV_AMD64_STAT; break; /* * 56-57 reserved * 58 %fs.base * 59 %gs.base * 60-61 reserved */ default: FIXME("Don't know how to map register %d\n", regno); return 0; } return reg; } static void *x86_64_fetch_context_reg(union ctx *pctx, unsigned regno, unsigned *size) { #ifdef __x86_64__ CONTEXT *ctx = &pctx->ctx; switch (regno) { case CV_AMD64_RAX: *size = sizeof(ctx->Rax); return &ctx->Rax; case CV_AMD64_RDX: *size = sizeof(ctx->Rdx); return &ctx->Rdx; case CV_AMD64_RCX: *size = sizeof(ctx->Rcx); return &ctx->Rcx; case CV_AMD64_RBX: *size = sizeof(ctx->Rbx); return &ctx->Rbx; case CV_AMD64_RSI: *size = sizeof(ctx->Rsi); return &ctx->Rsi; case CV_AMD64_RDI: *size = sizeof(ctx->Rdi); return &ctx->Rdi; case CV_AMD64_RBP: *size = sizeof(ctx->Rbp); return &ctx->Rbp; case CV_AMD64_RSP: *size = sizeof(ctx->Rsp); return &ctx->Rsp; case CV_AMD64_R8: *size = sizeof(ctx->R8); return &ctx->R8; case CV_AMD64_R9: *size = sizeof(ctx->R9); return &ctx->R9; case CV_AMD64_R10: *size = sizeof(ctx->R10); return &ctx->R10; case CV_AMD64_R11: *size = sizeof(ctx->R11); return &ctx->R11; case CV_AMD64_R12: *size = sizeof(ctx->R12); return &ctx->R12; case CV_AMD64_R13: *size = sizeof(ctx->R13); return &ctx->R13; case CV_AMD64_R14: *size = sizeof(ctx->R14); return &ctx->R14; case CV_AMD64_R15: *size = sizeof(ctx->R15); return &ctx->R15; case CV_AMD64_RIP: *size = sizeof(ctx->Rip); return &ctx->Rip; case CV_AMD64_XMM0 + 0: *size = sizeof(ctx->u.s.Xmm0 ); return &ctx->u.s.Xmm0; case CV_AMD64_XMM0 + 1: *size = sizeof(ctx->u.s.Xmm1 ); return &ctx->u.s.Xmm1; case CV_AMD64_XMM0 + 2: *size = sizeof(ctx->u.s.Xmm2 ); return &ctx->u.s.Xmm2; case CV_AMD64_XMM0 + 3: *size = sizeof(ctx->u.s.Xmm3 ); return &ctx->u.s.Xmm3; case CV_AMD64_XMM0 + 4: *size = sizeof(ctx->u.s.Xmm4 ); return &ctx->u.s.Xmm4; case CV_AMD64_XMM0 + 5: *size = sizeof(ctx->u.s.Xmm5 ); return &ctx->u.s.Xmm5; case CV_AMD64_XMM0 + 6: *size = sizeof(ctx->u.s.Xmm6 ); return &ctx->u.s.Xmm6; case CV_AMD64_XMM0 + 7: *size = sizeof(ctx->u.s.Xmm7 ); return &ctx->u.s.Xmm7; case CV_AMD64_XMM8 + 0: *size = sizeof(ctx->u.s.Xmm8 ); return &ctx->u.s.Xmm8; case CV_AMD64_XMM8 + 1: *size = sizeof(ctx->u.s.Xmm9 ); return &ctx->u.s.Xmm9; case CV_AMD64_XMM8 + 2: *size = sizeof(ctx->u.s.Xmm10); return &ctx->u.s.Xmm10; case CV_AMD64_XMM8 + 3: *size = sizeof(ctx->u.s.Xmm11); return &ctx->u.s.Xmm11; case CV_AMD64_XMM8 + 4: *size = sizeof(ctx->u.s.Xmm12); return &ctx->u.s.Xmm12; case CV_AMD64_XMM8 + 5: *size = sizeof(ctx->u.s.Xmm13); return &ctx->u.s.Xmm13; case CV_AMD64_XMM8 + 6: *size = sizeof(ctx->u.s.Xmm14); return &ctx->u.s.Xmm14; case CV_AMD64_XMM8 + 7: *size = sizeof(ctx->u.s.Xmm15); return &ctx->u.s.Xmm15; case CV_AMD64_ST0 + 0: *size = sizeof(ctx->u.s.Legacy[0]); return &ctx->u.s.Legacy[0]; case CV_AMD64_ST0 + 1: *size = sizeof(ctx->u.s.Legacy[1]); return &ctx->u.s.Legacy[1]; case CV_AMD64_ST0 + 2: *size = sizeof(ctx->u.s.Legacy[2]); return &ctx->u.s.Legacy[2]; case CV_AMD64_ST0 + 3: *size = sizeof(ctx->u.s.Legacy[3]); return &ctx->u.s.Legacy[3]; case CV_AMD64_ST0 + 4: *size = sizeof(ctx->u.s.Legacy[4]); return &ctx->u.s.Legacy[4]; case CV_AMD64_ST0 + 5: *size = sizeof(ctx->u.s.Legacy[5]); return &ctx->u.s.Legacy[5]; case CV_AMD64_ST0 + 6: *size = sizeof(ctx->u.s.Legacy[6]); return &ctx->u.s.Legacy[6]; case CV_AMD64_ST0 + 7: *size = sizeof(ctx->u.s.Legacy[7]); return &ctx->u.s.Legacy[7]; case CV_AMD64_EFLAGS: *size = sizeof(ctx->EFlags); return &ctx->EFlags; case CV_AMD64_ES: *size = sizeof(ctx->SegEs); return &ctx->SegEs; case CV_AMD64_CS: *size = sizeof(ctx->SegCs); return &ctx->SegCs; case CV_AMD64_SS: *size = sizeof(ctx->SegSs); return &ctx->SegSs; case CV_AMD64_DS: *size = sizeof(ctx->SegDs); return &ctx->SegDs; case CV_AMD64_FS: *size = sizeof(ctx->SegFs); return &ctx->SegFs; case CV_AMD64_GS: *size = sizeof(ctx->SegGs); return &ctx->SegGs; } #endif FIXME("Unknown register %x\n", regno); return NULL; } static const char* x86_64_fetch_regname(unsigned regno) { switch (regno) { case CV_AMD64_RAX: return "rax"; case CV_AMD64_RDX: return "rdx"; case CV_AMD64_RCX: return "rcx"; case CV_AMD64_RBX: return "rbx"; case CV_AMD64_RSI: return "rsi"; case CV_AMD64_RDI: return "rdi"; case CV_AMD64_RBP: return "rbp"; case CV_AMD64_RSP: return "rsp"; case CV_AMD64_R8: return "r8"; case CV_AMD64_R9: return "r9"; case CV_AMD64_R10: return "r10"; case CV_AMD64_R11: return "r11"; case CV_AMD64_R12: return "r12"; case CV_AMD64_R13: return "r13"; case CV_AMD64_R14: return "r14"; case CV_AMD64_R15: return "r15"; case CV_AMD64_RIP: return "rip"; case CV_AMD64_XMM0 + 0: return "xmm0"; case CV_AMD64_XMM0 + 1: return "xmm1"; case CV_AMD64_XMM0 + 2: return "xmm2"; case CV_AMD64_XMM0 + 3: return "xmm3"; case CV_AMD64_XMM0 + 4: return "xmm4"; case CV_AMD64_XMM0 + 5: return "xmm5"; case CV_AMD64_XMM0 + 6: return "xmm6"; case CV_AMD64_XMM0 + 7: return "xmm7"; case CV_AMD64_XMM8 + 0: return "xmm8"; case CV_AMD64_XMM8 + 1: return "xmm9"; case CV_AMD64_XMM8 + 2: return "xmm10"; case CV_AMD64_XMM8 + 3: return "xmm11"; case CV_AMD64_XMM8 + 4: return "xmm12"; case CV_AMD64_XMM8 + 5: return "xmm13"; case CV_AMD64_XMM8 + 6: return "xmm14"; case CV_AMD64_XMM8 + 7: return "xmm15"; case CV_AMD64_ST0 + 0: return "st0"; case CV_AMD64_ST0 + 1: return "st1"; case CV_AMD64_ST0 + 2: return "st2"; case CV_AMD64_ST0 + 3: return "st3"; case CV_AMD64_ST0 + 4: return "st4"; case CV_AMD64_ST0 + 5: return "st5"; case CV_AMD64_ST0 + 6: return "st6"; case CV_AMD64_ST0 + 7: return "st7"; case CV_AMD64_EFLAGS: return "eflags"; case CV_AMD64_ES: return "es"; case CV_AMD64_CS: return "cs"; case CV_AMD64_SS: return "ss"; case CV_AMD64_DS: return "ds"; case CV_AMD64_FS: return "fs"; case CV_AMD64_GS: return "gs"; } FIXME("Unknown register %x\n", regno); return NULL; } static BOOL x86_64_fetch_minidump_thread(struct dump_context* dc, unsigned index, unsigned flags, const CONTEXT* ctx) { if (ctx->ContextFlags && (flags & ThreadWriteInstructionWindow)) { /* FIXME: crop values across module boundaries, */ #ifdef __x86_64__ ULONG64 base = ctx->Rip <= 0x80 ? 0 : ctx->Rip - 0x80; minidump_add_memory_block(dc, base, ctx->Rip + 0x80 - base, 0); #endif } return TRUE; } static BOOL x86_64_fetch_minidump_module(struct dump_context* dc, unsigned index, unsigned flags) { /* FIXME: not sure about the flags... */ if (1) { /* FIXME: crop values across module boundaries, */ #ifdef __x86_64__ struct process* pcs; struct module* module; const RUNTIME_FUNCTION* rtf; ULONG size; if (!(pcs = process_find_by_handle(dc->hProcess)) || !(module = module_find_by_addr(pcs, dc->modules[index].base, DMT_UNKNOWN))) return FALSE; rtf = (const RUNTIME_FUNCTION*)pe_map_directory(module, IMAGE_DIRECTORY_ENTRY_EXCEPTION, &size); if (rtf) { const RUNTIME_FUNCTION* end = (const RUNTIME_FUNCTION*)((const char*)rtf + size); UNWIND_INFO ui; while (rtf + 1 < end) { while (rtf->UnwindData & 1) /* follow chained entry */ { FIXME("RunTime_Function outside IMAGE_DIRECTORY_ENTRY_EXCEPTION unimplemented yet!\n"); return FALSE; /* we need to read into the other process */ /* rtf = (RUNTIME_FUNCTION*)(module->module.BaseOfImage + (rtf->UnwindData & ~1)); */ } if (ReadProcessMemory(dc->hProcess, (void*)(dc->modules[index].base + rtf->UnwindData), &ui, sizeof(ui), NULL)) minidump_add_memory_block(dc, dc->modules[index].base + rtf->UnwindData, FIELD_OFFSET(UNWIND_INFO, UnwindCode) + ui.CountOfCodes * sizeof(UNWIND_CODE), 0); rtf++; } } #endif } return TRUE; } DECLSPEC_HIDDEN struct cpu cpu_x86_64 = { IMAGE_FILE_MACHINE_AMD64, 8, CV_AMD64_RSP, x86_64_get_addr, x86_64_stack_walk, x86_64_find_runtime_function, x86_64_map_dwarf_register, x86_64_fetch_context_reg, x86_64_fetch_regname, x86_64_fetch_minidump_thread, x86_64_fetch_minidump_module, };