synth.c 23.8 KB
Newer Older
Warren Dukes's avatar
Warren Dukes committed
1 2
/*
 * libmad - MPEG audio decoder library
3
 * Copyright (C) 2000-2004 Underbit Technologies, Inc.
Warren Dukes's avatar
Warren Dukes committed
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 *
19
 * $Id: synth.c,v 1.25 2004/01/23 09:41:33 rob Exp $
Warren Dukes's avatar
Warren Dukes committed
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857
 */

# ifdef HAVE_CONFIG_H
#  include "config.h"
# endif

# include "global.h"

# include "fixed.h"
# include "frame.h"
# include "synth.h"

/*
 * NAME:	synth->init()
 * DESCRIPTION:	initialize synth struct
 */
void mad_synth_init(struct mad_synth *synth)
{
  mad_synth_mute(synth);

  synth->phase = 0;

  synth->pcm.samplerate = 0;
  synth->pcm.channels   = 0;
  synth->pcm.length     = 0;
}

/*
 * NAME:	synth->mute()
 * DESCRIPTION:	zero all polyphase filterbank values, resetting synthesis
 */
void mad_synth_mute(struct mad_synth *synth)
{
  unsigned int ch, s, v;

  for (ch = 0; ch < 2; ++ch) {
    for (s = 0; s < 16; ++s) {
      for (v = 0; v < 8; ++v) {
	synth->filter[ch][0][0][s][v] = synth->filter[ch][0][1][s][v] =
	synth->filter[ch][1][0][s][v] = synth->filter[ch][1][1][s][v] = 0;
      }
    }
  }
}

/*
 * An optional optimization called here the Subband Synthesis Optimization
 * (SSO) improves the performance of subband synthesis at the expense of
 * accuracy.
 *
 * The idea is to simplify 32x32->64-bit multiplication to 32x32->32 such
 * that extra scaling and rounding are not necessary. This often allows the
 * compiler to use faster 32-bit multiply-accumulate instructions instead of
 * explicit 64-bit multiply, shift, and add instructions.
 *
 * SSO works like this: a full 32x32->64-bit multiply of two mad_fixed_t
 * values requires the result to be right-shifted 28 bits to be properly
 * scaled to the same fixed-point format. Right shifts can be applied at any
 * time to either operand or to the result, so the optimization involves
 * careful placement of these shifts to minimize the loss of accuracy.
 *
 * First, a 14-bit shift is applied with rounding at compile-time to the D[]
 * table of coefficients for the subband synthesis window. This only loses 2
 * bits of accuracy because the lower 12 bits are always zero. A second
 * 12-bit shift occurs after the DCT calculation. This loses 12 bits of
 * accuracy. Finally, a third 2-bit shift occurs just before the sample is
 * saved in the PCM buffer. 14 + 12 + 2 == 28 bits.
 */

/* FPM_DEFAULT without OPT_SSO will actually lose accuracy and performance */

# if defined(FPM_DEFAULT) && !defined(OPT_SSO)
#  define OPT_SSO
# endif

/* second SSO shift, with rounding */

# if defined(OPT_SSO)
#  define SHIFT(x)  (((x) + (1L << 11)) >> 12)
# else
#  define SHIFT(x)  (x)
# endif

/* possible DCT speed optimization */

# if defined(OPT_SPEED) && defined(MAD_F_MLX)
#  define OPT_DCTO
#  define MUL(x, y)  \
    ({ mad_fixed64hi_t hi;  \
       mad_fixed64lo_t lo;  \
       MAD_F_MLX(hi, lo, (x), (y));  \
       hi << (32 - MAD_F_SCALEBITS - 3);  \
    })
# else
#  undef OPT_DCTO
#  define MUL(x, y)  mad_f_mul((x), (y))
# endif

/*
 * NAME:	dct32()
 * DESCRIPTION:	perform fast in[32]->out[32] DCT
 */
static
void dct32(mad_fixed_t const in[32], unsigned int slot,
	   mad_fixed_t lo[16][8], mad_fixed_t hi[16][8])
{
  mad_fixed_t t0,   t1,   t2,   t3,   t4,   t5,   t6,   t7;
  mad_fixed_t t8,   t9,   t10,  t11,  t12,  t13,  t14,  t15;
  mad_fixed_t t16,  t17,  t18,  t19,  t20,  t21,  t22,  t23;
  mad_fixed_t t24,  t25,  t26,  t27,  t28,  t29,  t30,  t31;
  mad_fixed_t t32,  t33,  t34,  t35,  t36,  t37,  t38,  t39;
  mad_fixed_t t40,  t41,  t42,  t43,  t44,  t45,  t46,  t47;
  mad_fixed_t t48,  t49,  t50,  t51,  t52,  t53,  t54,  t55;
  mad_fixed_t t56,  t57,  t58,  t59,  t60,  t61,  t62,  t63;
  mad_fixed_t t64,  t65,  t66,  t67,  t68,  t69,  t70,  t71;
  mad_fixed_t t72,  t73,  t74,  t75,  t76,  t77,  t78,  t79;
  mad_fixed_t t80,  t81,  t82,  t83,  t84,  t85,  t86,  t87;
  mad_fixed_t t88,  t89,  t90,  t91,  t92,  t93,  t94,  t95;
  mad_fixed_t t96,  t97,  t98,  t99,  t100, t101, t102, t103;
  mad_fixed_t t104, t105, t106, t107, t108, t109, t110, t111;
  mad_fixed_t t112, t113, t114, t115, t116, t117, t118, t119;
  mad_fixed_t t120, t121, t122, t123, t124, t125, t126, t127;
  mad_fixed_t t128, t129, t130, t131, t132, t133, t134, t135;
  mad_fixed_t t136, t137, t138, t139, t140, t141, t142, t143;
  mad_fixed_t t144, t145, t146, t147, t148, t149, t150, t151;
  mad_fixed_t t152, t153, t154, t155, t156, t157, t158, t159;
  mad_fixed_t t160, t161, t162, t163, t164, t165, t166, t167;
  mad_fixed_t t168, t169, t170, t171, t172, t173, t174, t175;
  mad_fixed_t t176;

  /* costab[i] = cos(PI / (2 * 32) * i) */

# if defined(OPT_DCTO)
#  define costab1	MAD_F(0x7fd8878e)
#  define costab2	MAD_F(0x7f62368f)
#  define costab3	MAD_F(0x7e9d55fc)
#  define costab4	MAD_F(0x7d8a5f40)
#  define costab5	MAD_F(0x7c29fbee)
#  define costab6	MAD_F(0x7a7d055b)
#  define costab7	MAD_F(0x78848414)
#  define costab8	MAD_F(0x7641af3d)
#  define costab9	MAD_F(0x73b5ebd1)
#  define costab10	MAD_F(0x70e2cbc6)
#  define costab11	MAD_F(0x6dca0d14)
#  define costab12	MAD_F(0x6a6d98a4)
#  define costab13	MAD_F(0x66cf8120)
#  define costab14	MAD_F(0x62f201ac)
#  define costab15	MAD_F(0x5ed77c8a)
#  define costab16	MAD_F(0x5a82799a)
#  define costab17	MAD_F(0x55f5a4d2)
#  define costab18	MAD_F(0x5133cc94)
#  define costab19	MAD_F(0x4c3fdff4)
#  define costab20	MAD_F(0x471cece7)
#  define costab21	MAD_F(0x41ce1e65)
#  define costab22	MAD_F(0x3c56ba70)
#  define costab23	MAD_F(0x36ba2014)
#  define costab24	MAD_F(0x30fbc54d)
#  define costab25	MAD_F(0x2b1f34eb)
#  define costab26	MAD_F(0x25280c5e)
#  define costab27	MAD_F(0x1f19f97b)
#  define costab28	MAD_F(0x18f8b83c)
#  define costab29	MAD_F(0x12c8106f)
#  define costab30	MAD_F(0x0c8bd35e)
#  define costab31	MAD_F(0x0647d97c)
# else
#  define costab1	MAD_F(0x0ffb10f2)  /* 0.998795456 */
#  define costab2	MAD_F(0x0fec46d2)  /* 0.995184727 */
#  define costab3	MAD_F(0x0fd3aac0)  /* 0.989176510 */
#  define costab4	MAD_F(0x0fb14be8)  /* 0.980785280 */
#  define costab5	MAD_F(0x0f853f7e)  /* 0.970031253 */
#  define costab6	MAD_F(0x0f4fa0ab)  /* 0.956940336 */
#  define costab7	MAD_F(0x0f109082)  /* 0.941544065 */
#  define costab8	MAD_F(0x0ec835e8)  /* 0.923879533 */
#  define costab9	MAD_F(0x0e76bd7a)  /* 0.903989293 */
#  define costab10	MAD_F(0x0e1c5979)  /* 0.881921264 */
#  define costab11	MAD_F(0x0db941a3)  /* 0.857728610 */
#  define costab12	MAD_F(0x0d4db315)  /* 0.831469612 */
#  define costab13	MAD_F(0x0cd9f024)  /* 0.803207531 */
#  define costab14	MAD_F(0x0c5e4036)  /* 0.773010453 */
#  define costab15	MAD_F(0x0bdaef91)  /* 0.740951125 */
#  define costab16	MAD_F(0x0b504f33)  /* 0.707106781 */
#  define costab17	MAD_F(0x0abeb49a)  /* 0.671558955 */
#  define costab18	MAD_F(0x0a267993)  /* 0.634393284 */
#  define costab19	MAD_F(0x0987fbfe)  /* 0.595699304 */
#  define costab20	MAD_F(0x08e39d9d)  /* 0.555570233 */
#  define costab21	MAD_F(0x0839c3cd)  /* 0.514102744 */
#  define costab22	MAD_F(0x078ad74e)  /* 0.471396737 */
#  define costab23	MAD_F(0x06d74402)  /* 0.427555093 */
#  define costab24	MAD_F(0x061f78aa)  /* 0.382683432 */
#  define costab25	MAD_F(0x0563e69d)  /* 0.336889853 */
#  define costab26	MAD_F(0x04a5018c)  /* 0.290284677 */
#  define costab27	MAD_F(0x03e33f2f)  /* 0.242980180 */
#  define costab28	MAD_F(0x031f1708)  /* 0.195090322 */
#  define costab29	MAD_F(0x0259020e)  /* 0.146730474 */
#  define costab30	MAD_F(0x01917a6c)  /* 0.098017140 */
#  define costab31	MAD_F(0x00c8fb30)  /* 0.049067674 */
# endif

  t0   = in[0]  + in[31];  t16  = MUL(in[0]  - in[31], costab1);
  t1   = in[15] + in[16];  t17  = MUL(in[15] - in[16], costab31);

  t41  = t16 + t17;
  t59  = MUL(t16 - t17, costab2);
  t33  = t0  + t1;
  t50  = MUL(t0  - t1,  costab2);

  t2   = in[7]  + in[24];  t18  = MUL(in[7]  - in[24], costab15);
  t3   = in[8]  + in[23];  t19  = MUL(in[8]  - in[23], costab17);

  t42  = t18 + t19;
  t60  = MUL(t18 - t19, costab30);
  t34  = t2  + t3;
  t51  = MUL(t2  - t3,  costab30);

  t4   = in[3]  + in[28];  t20  = MUL(in[3]  - in[28], costab7);
  t5   = in[12] + in[19];  t21  = MUL(in[12] - in[19], costab25);

  t43  = t20 + t21;
  t61  = MUL(t20 - t21, costab14);
  t35  = t4  + t5;
  t52  = MUL(t4  - t5,  costab14);

  t6   = in[4]  + in[27];  t22  = MUL(in[4]  - in[27], costab9);
  t7   = in[11] + in[20];  t23  = MUL(in[11] - in[20], costab23);

  t44  = t22 + t23;
  t62  = MUL(t22 - t23, costab18);
  t36  = t6  + t7;
  t53  = MUL(t6  - t7,  costab18);

  t8   = in[1]  + in[30];  t24  = MUL(in[1]  - in[30], costab3);
  t9   = in[14] + in[17];  t25  = MUL(in[14] - in[17], costab29);

  t45  = t24 + t25;
  t63  = MUL(t24 - t25, costab6);
  t37  = t8  + t9;
  t54  = MUL(t8  - t9,  costab6);

  t10  = in[6]  + in[25];  t26  = MUL(in[6]  - in[25], costab13);
  t11  = in[9]  + in[22];  t27  = MUL(in[9]  - in[22], costab19);

  t46  = t26 + t27;
  t64  = MUL(t26 - t27, costab26);
  t38  = t10 + t11;
  t55  = MUL(t10 - t11, costab26);

  t12  = in[2]  + in[29];  t28  = MUL(in[2]  - in[29], costab5);
  t13  = in[13] + in[18];  t29  = MUL(in[13] - in[18], costab27);

  t47  = t28 + t29;
  t65  = MUL(t28 - t29, costab10);
  t39  = t12 + t13;
  t56  = MUL(t12 - t13, costab10);

  t14  = in[5]  + in[26];  t30  = MUL(in[5]  - in[26], costab11);
  t15  = in[10] + in[21];  t31  = MUL(in[10] - in[21], costab21);

  t48  = t30 + t31;
  t66  = MUL(t30 - t31, costab22);
  t40  = t14 + t15;
  t57  = MUL(t14 - t15, costab22);

  t69  = t33 + t34;  t89  = MUL(t33 - t34, costab4);
  t70  = t35 + t36;  t90  = MUL(t35 - t36, costab28);
  t71  = t37 + t38;  t91  = MUL(t37 - t38, costab12);
  t72  = t39 + t40;  t92  = MUL(t39 - t40, costab20);
  t73  = t41 + t42;  t94  = MUL(t41 - t42, costab4);
  t74  = t43 + t44;  t95  = MUL(t43 - t44, costab28);
  t75  = t45 + t46;  t96  = MUL(t45 - t46, costab12);
  t76  = t47 + t48;  t97  = MUL(t47 - t48, costab20);

  t78  = t50 + t51;  t100 = MUL(t50 - t51, costab4);
  t79  = t52 + t53;  t101 = MUL(t52 - t53, costab28);
  t80  = t54 + t55;  t102 = MUL(t54 - t55, costab12);
  t81  = t56 + t57;  t103 = MUL(t56 - t57, costab20);

  t83  = t59 + t60;  t106 = MUL(t59 - t60, costab4);
  t84  = t61 + t62;  t107 = MUL(t61 - t62, costab28);
  t85  = t63 + t64;  t108 = MUL(t63 - t64, costab12);
  t86  = t65 + t66;  t109 = MUL(t65 - t66, costab20);

  t113 = t69  + t70;
  t114 = t71  + t72;

  /*  0 */ hi[15][slot] = SHIFT(t113 + t114);
  /* 16 */ lo[ 0][slot] = SHIFT(MUL(t113 - t114, costab16));

  t115 = t73  + t74;
  t116 = t75  + t76;

  t32  = t115 + t116;

  /*  1 */ hi[14][slot] = SHIFT(t32);

  t118 = t78  + t79;
  t119 = t80  + t81;

  t58  = t118 + t119;

  /*  2 */ hi[13][slot] = SHIFT(t58);

  t121 = t83  + t84;
  t122 = t85  + t86;

  t67  = t121 + t122;

  t49  = (t67 * 2) - t32;

  /*  3 */ hi[12][slot] = SHIFT(t49);

  t125 = t89  + t90;
  t126 = t91  + t92;

  t93  = t125 + t126;

  /*  4 */ hi[11][slot] = SHIFT(t93);

  t128 = t94  + t95;
  t129 = t96  + t97;

  t98  = t128 + t129;

  t68  = (t98 * 2) - t49;

  /*  5 */ hi[10][slot] = SHIFT(t68);

  t132 = t100 + t101;
  t133 = t102 + t103;

  t104 = t132 + t133;

  t82  = (t104 * 2) - t58;

  /*  6 */ hi[ 9][slot] = SHIFT(t82);

  t136 = t106 + t107;
  t137 = t108 + t109;

  t110 = t136 + t137;

  t87  = (t110 * 2) - t67;

  t77  = (t87 * 2) - t68;

  /*  7 */ hi[ 8][slot] = SHIFT(t77);

  t141 = MUL(t69 - t70, costab8);
  t142 = MUL(t71 - t72, costab24);
  t143 = t141 + t142;

  /*  8 */ hi[ 7][slot] = SHIFT(t143);
  /* 24 */ lo[ 8][slot] =
	     SHIFT((MUL(t141 - t142, costab16) * 2) - t143);

  t144 = MUL(t73 - t74, costab8);
  t145 = MUL(t75 - t76, costab24);
  t146 = t144 + t145;

  t88  = (t146 * 2) - t77;

  /*  9 */ hi[ 6][slot] = SHIFT(t88);

  t148 = MUL(t78 - t79, costab8);
  t149 = MUL(t80 - t81, costab24);
  t150 = t148 + t149;

  t105 = (t150 * 2) - t82;

  /* 10 */ hi[ 5][slot] = SHIFT(t105);

  t152 = MUL(t83 - t84, costab8);
  t153 = MUL(t85 - t86, costab24);
  t154 = t152 + t153;

  t111 = (t154 * 2) - t87;

  t99  = (t111 * 2) - t88;

  /* 11 */ hi[ 4][slot] = SHIFT(t99);

  t157 = MUL(t89 - t90, costab8);
  t158 = MUL(t91 - t92, costab24);
  t159 = t157 + t158;

  t127 = (t159 * 2) - t93;

  /* 12 */ hi[ 3][slot] = SHIFT(t127);

  t160 = (MUL(t125 - t126, costab16) * 2) - t127;

  /* 20 */ lo[ 4][slot] = SHIFT(t160);
  /* 28 */ lo[12][slot] =
	     SHIFT((((MUL(t157 - t158, costab16) * 2) - t159) * 2) - t160);

  t161 = MUL(t94 - t95, costab8);
  t162 = MUL(t96 - t97, costab24);
  t163 = t161 + t162;

  t130 = (t163 * 2) - t98;

  t112 = (t130 * 2) - t99;

  /* 13 */ hi[ 2][slot] = SHIFT(t112);

  t164 = (MUL(t128 - t129, costab16) * 2) - t130;

  t166 = MUL(t100 - t101, costab8);
  t167 = MUL(t102 - t103, costab24);
  t168 = t166 + t167;

  t134 = (t168 * 2) - t104;

  t120 = (t134 * 2) - t105;

  /* 14 */ hi[ 1][slot] = SHIFT(t120);

  t135 = (MUL(t118 - t119, costab16) * 2) - t120;

  /* 18 */ lo[ 2][slot] = SHIFT(t135);

  t169 = (MUL(t132 - t133, costab16) * 2) - t134;

  t151 = (t169 * 2) - t135;

  /* 22 */ lo[ 6][slot] = SHIFT(t151);

  t170 = (((MUL(t148 - t149, costab16) * 2) - t150) * 2) - t151;

  /* 26 */ lo[10][slot] = SHIFT(t170);
  /* 30 */ lo[14][slot] =
	     SHIFT((((((MUL(t166 - t167, costab16) * 2) -
		       t168) * 2) - t169) * 2) - t170);

  t171 = MUL(t106 - t107, costab8);
  t172 = MUL(t108 - t109, costab24);
  t173 = t171 + t172;

  t138 = (t173 * 2) - t110;

  t123 = (t138 * 2) - t111;

  t139 = (MUL(t121 - t122, costab16) * 2) - t123;

  t117 = (t123 * 2) - t112;

  /* 15 */ hi[ 0][slot] = SHIFT(t117);

  t124 = (MUL(t115 - t116, costab16) * 2) - t117;

  /* 17 */ lo[ 1][slot] = SHIFT(t124);

  t131 = (t139 * 2) - t124;

  /* 19 */ lo[ 3][slot] = SHIFT(t131);

  t140 = (t164 * 2) - t131;

  /* 21 */ lo[ 5][slot] = SHIFT(t140);

  t174 = (MUL(t136 - t137, costab16) * 2) - t138;

  t155 = (t174 * 2) - t139;

  t147 = (t155 * 2) - t140;

  /* 23 */ lo[ 7][slot] = SHIFT(t147);

  t156 = (((MUL(t144 - t145, costab16) * 2) - t146) * 2) - t147;

  /* 25 */ lo[ 9][slot] = SHIFT(t156);

  t175 = (((MUL(t152 - t153, costab16) * 2) - t154) * 2) - t155;

  t165 = (t175 * 2) - t156;

  /* 27 */ lo[11][slot] = SHIFT(t165);

  t176 = (((((MUL(t161 - t162, costab16) * 2) -
	     t163) * 2) - t164) * 2) - t165;

  /* 29 */ lo[13][slot] = SHIFT(t176);
  /* 31 */ lo[15][slot] =
	     SHIFT((((((((MUL(t171 - t172, costab16) * 2) -
			 t173) * 2) - t174) * 2) - t175) * 2) - t176);

  /*
   * Totals:
   *  80 multiplies
   *  80 additions
   * 119 subtractions
   *  49 shifts (not counting SSO)
   */
}

# undef MUL
# undef SHIFT

/* third SSO shift and/or D[] optimization preshift */

# if defined(OPT_SSO)
#  if MAD_F_FRACBITS != 28
#   error "MAD_F_FRACBITS must be 28 to use OPT_SSO"
#  endif
#  define ML0(hi, lo, x, y)	((lo)  = (x) * (y))
#  define MLA(hi, lo, x, y)	((lo) += (x) * (y))
#  define MLN(hi, lo)		((lo)  = -(lo))
#  define MLZ(hi, lo)		((void) (hi), (mad_fixed_t) (lo))
#  define SHIFT(x)		((x) >> 2)
#  define PRESHIFT(x)		((MAD_F(x) + (1L << 13)) >> 14)
# else
#  define ML0(hi, lo, x, y)	MAD_F_ML0((hi), (lo), (x), (y))
#  define MLA(hi, lo, x, y)	MAD_F_MLA((hi), (lo), (x), (y))
#  define MLN(hi, lo)		MAD_F_MLN((hi), (lo))
#  define MLZ(hi, lo)		MAD_F_MLZ((hi), (lo))
#  define SHIFT(x)		(x)
#  if defined(MAD_F_SCALEBITS)
#   undef  MAD_F_SCALEBITS
#   define MAD_F_SCALEBITS	(MAD_F_FRACBITS - 12)
#   define PRESHIFT(x)		(MAD_F(x) >> 12)
#  else
#   define PRESHIFT(x)		MAD_F(x)
#  endif
# endif

static
mad_fixed_t const D[17][32] = {
# include "D.dat"
};

# if defined(ASO_SYNTH)
void synth_full(struct mad_synth *, struct mad_frame const *,
		unsigned int, unsigned int);
# else
/*
 * NAME:	synth->full()
 * DESCRIPTION:	perform full frequency PCM synthesis
 */
static
void synth_full(struct mad_synth *synth, struct mad_frame const *frame,
		unsigned int nch, unsigned int ns)
{
  unsigned int phase, ch, s, sb, pe, po;
  mad_fixed_t *pcm1, *pcm2, (*filter)[2][2][16][8];
  mad_fixed_t const (*sbsample)[36][32];
  register mad_fixed_t (*fe)[8], (*fx)[8], (*fo)[8];
  register mad_fixed_t const (*Dptr)[32], *ptr;
  register mad_fixed64hi_t hi;
  register mad_fixed64lo_t lo;

  for (ch = 0; ch < nch; ++ch) {
    sbsample = &frame->sbsample[ch];
    filter   = &synth->filter[ch];
    phase    = synth->phase;
    pcm1     = synth->pcm.samples[ch];

    for (s = 0; s < ns; ++s) {
      dct32((*sbsample)[s], phase >> 1,
	    (*filter)[0][phase & 1], (*filter)[1][phase & 1]);

      pe = phase & ~1;
      po = ((phase - 1) & 0xf) | 1;

      /* calculate 32 samples */

      fe = &(*filter)[0][ phase & 1][0];
      fx = &(*filter)[0][~phase & 1][0];
      fo = &(*filter)[1][~phase & 1][0];

      Dptr = &D[0];

      ptr = *Dptr + po;
      ML0(hi, lo, (*fx)[0], ptr[ 0]);
      MLA(hi, lo, (*fx)[1], ptr[14]);
      MLA(hi, lo, (*fx)[2], ptr[12]);
      MLA(hi, lo, (*fx)[3], ptr[10]);
      MLA(hi, lo, (*fx)[4], ptr[ 8]);
      MLA(hi, lo, (*fx)[5], ptr[ 6]);
      MLA(hi, lo, (*fx)[6], ptr[ 4]);
      MLA(hi, lo, (*fx)[7], ptr[ 2]);
      MLN(hi, lo);

      ptr = *Dptr + pe;
      MLA(hi, lo, (*fe)[0], ptr[ 0]);
      MLA(hi, lo, (*fe)[1], ptr[14]);
      MLA(hi, lo, (*fe)[2], ptr[12]);
      MLA(hi, lo, (*fe)[3], ptr[10]);
      MLA(hi, lo, (*fe)[4], ptr[ 8]);
      MLA(hi, lo, (*fe)[5], ptr[ 6]);
      MLA(hi, lo, (*fe)[6], ptr[ 4]);
      MLA(hi, lo, (*fe)[7], ptr[ 2]);

      *pcm1++ = SHIFT(MLZ(hi, lo));

      pcm2 = pcm1 + 30;

      for (sb = 1; sb < 16; ++sb) {
	++fe;
	++Dptr;

	/* D[32 - sb][i] == -D[sb][31 - i] */

	ptr = *Dptr + po;
	ML0(hi, lo, (*fo)[0], ptr[ 0]);
	MLA(hi, lo, (*fo)[1], ptr[14]);
	MLA(hi, lo, (*fo)[2], ptr[12]);
	MLA(hi, lo, (*fo)[3], ptr[10]);
	MLA(hi, lo, (*fo)[4], ptr[ 8]);
	MLA(hi, lo, (*fo)[5], ptr[ 6]);
	MLA(hi, lo, (*fo)[6], ptr[ 4]);
	MLA(hi, lo, (*fo)[7], ptr[ 2]);
	MLN(hi, lo);

	ptr = *Dptr + pe;
	MLA(hi, lo, (*fe)[7], ptr[ 2]);
	MLA(hi, lo, (*fe)[6], ptr[ 4]);
	MLA(hi, lo, (*fe)[5], ptr[ 6]);
	MLA(hi, lo, (*fe)[4], ptr[ 8]);
	MLA(hi, lo, (*fe)[3], ptr[10]);
	MLA(hi, lo, (*fe)[2], ptr[12]);
	MLA(hi, lo, (*fe)[1], ptr[14]);
	MLA(hi, lo, (*fe)[0], ptr[ 0]);

	*pcm1++ = SHIFT(MLZ(hi, lo));

	ptr = *Dptr - pe;
	ML0(hi, lo, (*fe)[0], ptr[31 - 16]);
	MLA(hi, lo, (*fe)[1], ptr[31 - 14]);
	MLA(hi, lo, (*fe)[2], ptr[31 - 12]);
	MLA(hi, lo, (*fe)[3], ptr[31 - 10]);
	MLA(hi, lo, (*fe)[4], ptr[31 -  8]);
	MLA(hi, lo, (*fe)[5], ptr[31 -  6]);
	MLA(hi, lo, (*fe)[6], ptr[31 -  4]);
	MLA(hi, lo, (*fe)[7], ptr[31 -  2]);

	ptr = *Dptr - po;
	MLA(hi, lo, (*fo)[7], ptr[31 -  2]);
	MLA(hi, lo, (*fo)[6], ptr[31 -  4]);
	MLA(hi, lo, (*fo)[5], ptr[31 -  6]);
	MLA(hi, lo, (*fo)[4], ptr[31 -  8]);
	MLA(hi, lo, (*fo)[3], ptr[31 - 10]);
	MLA(hi, lo, (*fo)[2], ptr[31 - 12]);
	MLA(hi, lo, (*fo)[1], ptr[31 - 14]);
	MLA(hi, lo, (*fo)[0], ptr[31 - 16]);

	*pcm2-- = SHIFT(MLZ(hi, lo));

	++fo;
      }

      ++Dptr;

      ptr = *Dptr + po;
      ML0(hi, lo, (*fo)[0], ptr[ 0]);
      MLA(hi, lo, (*fo)[1], ptr[14]);
      MLA(hi, lo, (*fo)[2], ptr[12]);
      MLA(hi, lo, (*fo)[3], ptr[10]);
      MLA(hi, lo, (*fo)[4], ptr[ 8]);
      MLA(hi, lo, (*fo)[5], ptr[ 6]);
      MLA(hi, lo, (*fo)[6], ptr[ 4]);
      MLA(hi, lo, (*fo)[7], ptr[ 2]);

      *pcm1 = SHIFT(-MLZ(hi, lo));
      pcm1 += 16;

      phase = (phase + 1) % 16;
    }
  }
}
# endif

/*
 * NAME:	synth->half()
 * DESCRIPTION:	perform half frequency PCM synthesis
 */
static
void synth_half(struct mad_synth *synth, struct mad_frame const *frame,
		unsigned int nch, unsigned int ns)
{
  unsigned int phase, ch, s, sb, pe, po;
  mad_fixed_t *pcm1, *pcm2, (*filter)[2][2][16][8];
  mad_fixed_t const (*sbsample)[36][32];
  register mad_fixed_t (*fe)[8], (*fx)[8], (*fo)[8];
  register mad_fixed_t const (*Dptr)[32], *ptr;
  register mad_fixed64hi_t hi;
  register mad_fixed64lo_t lo;

  for (ch = 0; ch < nch; ++ch) {
    sbsample = &frame->sbsample[ch];
    filter   = &synth->filter[ch];
    phase    = synth->phase;
    pcm1     = synth->pcm.samples[ch];

    for (s = 0; s < ns; ++s) {
      dct32((*sbsample)[s], phase >> 1,
	    (*filter)[0][phase & 1], (*filter)[1][phase & 1]);

      pe = phase & ~1;
      po = ((phase - 1) & 0xf) | 1;

      /* calculate 16 samples */

      fe = &(*filter)[0][ phase & 1][0];
      fx = &(*filter)[0][~phase & 1][0];
      fo = &(*filter)[1][~phase & 1][0];

      Dptr = &D[0];

      ptr = *Dptr + po;
      ML0(hi, lo, (*fx)[0], ptr[ 0]);
      MLA(hi, lo, (*fx)[1], ptr[14]);
      MLA(hi, lo, (*fx)[2], ptr[12]);
      MLA(hi, lo, (*fx)[3], ptr[10]);
      MLA(hi, lo, (*fx)[4], ptr[ 8]);
      MLA(hi, lo, (*fx)[5], ptr[ 6]);
      MLA(hi, lo, (*fx)[6], ptr[ 4]);
      MLA(hi, lo, (*fx)[7], ptr[ 2]);
      MLN(hi, lo);

      ptr = *Dptr + pe;
      MLA(hi, lo, (*fe)[0], ptr[ 0]);
      MLA(hi, lo, (*fe)[1], ptr[14]);
      MLA(hi, lo, (*fe)[2], ptr[12]);
      MLA(hi, lo, (*fe)[3], ptr[10]);
      MLA(hi, lo, (*fe)[4], ptr[ 8]);
      MLA(hi, lo, (*fe)[5], ptr[ 6]);
      MLA(hi, lo, (*fe)[6], ptr[ 4]);
      MLA(hi, lo, (*fe)[7], ptr[ 2]);

      *pcm1++ = SHIFT(MLZ(hi, lo));

      pcm2 = pcm1 + 14;

      for (sb = 1; sb < 16; ++sb) {
	++fe;
	++Dptr;

	/* D[32 - sb][i] == -D[sb][31 - i] */

	if (!(sb & 1)) {
	  ptr = *Dptr + po;
	  ML0(hi, lo, (*fo)[0], ptr[ 0]);
	  MLA(hi, lo, (*fo)[1], ptr[14]);
	  MLA(hi, lo, (*fo)[2], ptr[12]);
	  MLA(hi, lo, (*fo)[3], ptr[10]);
	  MLA(hi, lo, (*fo)[4], ptr[ 8]);
	  MLA(hi, lo, (*fo)[5], ptr[ 6]);
	  MLA(hi, lo, (*fo)[6], ptr[ 4]);
	  MLA(hi, lo, (*fo)[7], ptr[ 2]);
	  MLN(hi, lo);

	  ptr = *Dptr + pe;
	  MLA(hi, lo, (*fe)[7], ptr[ 2]);
	  MLA(hi, lo, (*fe)[6], ptr[ 4]);
	  MLA(hi, lo, (*fe)[5], ptr[ 6]);
	  MLA(hi, lo, (*fe)[4], ptr[ 8]);
	  MLA(hi, lo, (*fe)[3], ptr[10]);
	  MLA(hi, lo, (*fe)[2], ptr[12]);
	  MLA(hi, lo, (*fe)[1], ptr[14]);
	  MLA(hi, lo, (*fe)[0], ptr[ 0]);

	  *pcm1++ = SHIFT(MLZ(hi, lo));

	  ptr = *Dptr - po;
	  ML0(hi, lo, (*fo)[7], ptr[31 -  2]);
	  MLA(hi, lo, (*fo)[6], ptr[31 -  4]);
	  MLA(hi, lo, (*fo)[5], ptr[31 -  6]);
	  MLA(hi, lo, (*fo)[4], ptr[31 -  8]);
	  MLA(hi, lo, (*fo)[3], ptr[31 - 10]);
	  MLA(hi, lo, (*fo)[2], ptr[31 - 12]);
	  MLA(hi, lo, (*fo)[1], ptr[31 - 14]);
	  MLA(hi, lo, (*fo)[0], ptr[31 - 16]);

	  ptr = *Dptr - pe;
	  MLA(hi, lo, (*fe)[0], ptr[31 - 16]);
	  MLA(hi, lo, (*fe)[1], ptr[31 - 14]);
	  MLA(hi, lo, (*fe)[2], ptr[31 - 12]);
	  MLA(hi, lo, (*fe)[3], ptr[31 - 10]);
	  MLA(hi, lo, (*fe)[4], ptr[31 -  8]);
	  MLA(hi, lo, (*fe)[5], ptr[31 -  6]);
	  MLA(hi, lo, (*fe)[6], ptr[31 -  4]);
	  MLA(hi, lo, (*fe)[7], ptr[31 -  2]);

	  *pcm2-- = SHIFT(MLZ(hi, lo));
	}

	++fo;
      }

      ++Dptr;

      ptr = *Dptr + po;
      ML0(hi, lo, (*fo)[0], ptr[ 0]);
      MLA(hi, lo, (*fo)[1], ptr[14]);
      MLA(hi, lo, (*fo)[2], ptr[12]);
      MLA(hi, lo, (*fo)[3], ptr[10]);
      MLA(hi, lo, (*fo)[4], ptr[ 8]);
      MLA(hi, lo, (*fo)[5], ptr[ 6]);
      MLA(hi, lo, (*fo)[6], ptr[ 4]);
      MLA(hi, lo, (*fo)[7], ptr[ 2]);

      *pcm1 = SHIFT(-MLZ(hi, lo));
      pcm1 += 8;

      phase = (phase + 1) % 16;
    }
  }
}

/*
 * NAME:	synth->frame()
 * DESCRIPTION:	perform PCM synthesis of frame subband samples
 */
void mad_synth_frame(struct mad_synth *synth, struct mad_frame const *frame)
{
  unsigned int nch, ns;
  void (*synth_frame)(struct mad_synth *, struct mad_frame const *,
		      unsigned int, unsigned int);

  nch = MAD_NCHANNELS(&frame->header);
  ns  = MAD_NSBSAMPLES(&frame->header);

  synth->pcm.samplerate = frame->header.samplerate;
  synth->pcm.channels   = nch;
  synth->pcm.length     = 32 * ns;

  synth_frame = synth_full;

  if (frame->options & MAD_OPTION_HALFSAMPLERATE) {
    synth->pcm.samplerate /= 2;
    synth->pcm.length     /= 2;

    synth_frame = synth_half;
  }

  synth_frame(synth, frame, nch, ns);

  synth->phase = (synth->phase + ns) % 16;
}