jfdctflt.c 5.91 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
/*
 * jfdctflt.c
 *
 * Copyright (C) 1994-1996, Thomas G. Lane.
 * Modified 2003-2017 by Guido Vollbeding.
 * This file is part of the Independent JPEG Group's software.
 * For conditions of distribution and use, see the accompanying README file.
 *
 * This file contains a floating-point implementation of the
 * forward DCT (Discrete Cosine Transform).
 *
 * This implementation should be more accurate than either of the integer
 * DCT implementations.  However, it may not give the same results on all
 * machines because of differences in roundoff behavior.  Speed will depend
 * on the hardware's floating point capacity.
 *
 * A 2-D DCT can be done by 1-D DCT on each row followed by 1-D DCT
 * on each column.  Direct algorithms are also available, but they are
 * much more complex and seem not to be any faster when reduced to code.
 *
 * This implementation is based on Arai, Agui, and Nakajima's algorithm for
 * scaled DCT.  Their original paper (Trans. IEICE E-71(11):1095) is in
 * Japanese, but the algorithm is described in the Pennebaker & Mitchell
 * JPEG textbook (see REFERENCES section in file README).  The following code
 * is based directly on figure 4-8 in P&M.
 * While an 8-point DCT cannot be done in less than 11 multiplies, it is
 * possible to arrange the computation so that many of the multiplies are
 * simple scalings of the final outputs.  These multiplies can then be
 * folded into the multiplications or divisions by the JPEG quantization
 * table entries.  The AA&N method leaves only 5 multiplies and 29 adds
 * to be done in the DCT itself.
 * The primary disadvantage of this method is that with a fixed-point
 * implementation, accuracy is lost due to imprecise representation of the
 * scaled quantization values.  However, that problem does not arise if
 * we use floating point arithmetic.
 */

#define JPEG_INTERNALS
#include "jinclude.h"
#include "jpeglib.h"
#include "jdct.h"		/* Private declarations for DCT subsystem */

#ifdef DCT_FLOAT_SUPPORTED


/*
 * This module is specialized to the case DCTSIZE = 8.
 */

#if DCTSIZE != 8
  Sorry, this code only copes with 8x8 DCT blocks. /* deliberate syntax err */
#endif


/*
 * Perform the forward DCT on one block of samples.
 *
 * cK represents cos(K*pi/16).
 */

GLOBAL(void)
jpeg_fdct_float (FAST_FLOAT * data, JSAMPARRAY sample_data, JDIMENSION start_col)
{
  FAST_FLOAT tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
  FAST_FLOAT tmp10, tmp11, tmp12, tmp13;
  FAST_FLOAT z1, z2, z3, z4, z5, z11, z13;
  FAST_FLOAT *dataptr;
  JSAMPROW elemptr;
  int ctr;

  /* Pass 1: process rows. */

  dataptr = data;
  for (ctr = 0; ctr < DCTSIZE; ctr++) {
    elemptr = sample_data[ctr] + start_col;

    /* Load data into workspace */
    tmp0 = (FAST_FLOAT) (GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[7]));
    tmp7 = (FAST_FLOAT) (GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[7]));
    tmp1 = (FAST_FLOAT) (GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[6]));
    tmp6 = (FAST_FLOAT) (GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[6]));
    tmp2 = (FAST_FLOAT) (GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[5]));
    tmp5 = (FAST_FLOAT) (GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[5]));
    tmp3 = (FAST_FLOAT) (GETJSAMPLE(elemptr[3]) + GETJSAMPLE(elemptr[4]));
    tmp4 = (FAST_FLOAT) (GETJSAMPLE(elemptr[3]) - GETJSAMPLE(elemptr[4]));

    /* Even part */

    tmp10 = tmp0 + tmp3;	/* phase 2 */
    tmp13 = tmp0 - tmp3;
    tmp11 = tmp1 + tmp2;
    tmp12 = tmp1 - tmp2;

    /* Apply unsigned->signed conversion. */
    dataptr[0] = tmp10 + tmp11 - 8 * CENTERJSAMPLE; /* phase 3 */
    dataptr[4] = tmp10 - tmp11;

    z1 = (tmp12 + tmp13) * ((FAST_FLOAT) 0.707106781); /* c4 */
    dataptr[2] = tmp13 + z1;	/* phase 5 */
    dataptr[6] = tmp13 - z1;

    /* Odd part */

    tmp10 = tmp4 + tmp5;	/* phase 2 */
    tmp11 = tmp5 + tmp6;
    tmp12 = tmp6 + tmp7;

    /* The rotator is modified from fig 4-8 to avoid extra negations. */
    z5 = (tmp10 - tmp12) * ((FAST_FLOAT) 0.382683433); /* c6 */
    z2 = ((FAST_FLOAT) 0.541196100) * tmp10 + z5; /* c2-c6 */
    z4 = ((FAST_FLOAT) 1.306562965) * tmp12 + z5; /* c2+c6 */
    z3 = tmp11 * ((FAST_FLOAT) 0.707106781); /* c4 */

    z11 = tmp7 + z3;		/* phase 5 */
    z13 = tmp7 - z3;

    dataptr[5] = z13 + z2;	/* phase 6 */
    dataptr[3] = z13 - z2;
    dataptr[1] = z11 + z4;
    dataptr[7] = z11 - z4;

    dataptr += DCTSIZE;		/* advance pointer to next row */
  }

  /* Pass 2: process columns. */

  dataptr = data;
  for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
    tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*7];
    tmp7 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*7];
    tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*6];
    tmp6 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*6];
    tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*5];
    tmp5 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*5];
    tmp3 = dataptr[DCTSIZE*3] + dataptr[DCTSIZE*4];
    tmp4 = dataptr[DCTSIZE*3] - dataptr[DCTSIZE*4];

    /* Even part */

    tmp10 = tmp0 + tmp3;	/* phase 2 */
    tmp13 = tmp0 - tmp3;
    tmp11 = tmp1 + tmp2;
    tmp12 = tmp1 - tmp2;

    dataptr[DCTSIZE*0] = tmp10 + tmp11; /* phase 3 */
    dataptr[DCTSIZE*4] = tmp10 - tmp11;

    z1 = (tmp12 + tmp13) * ((FAST_FLOAT) 0.707106781); /* c4 */
    dataptr[DCTSIZE*2] = tmp13 + z1; /* phase 5 */
    dataptr[DCTSIZE*6] = tmp13 - z1;

    /* Odd part */

    tmp10 = tmp4 + tmp5;	/* phase 2 */
    tmp11 = tmp5 + tmp6;
    tmp12 = tmp6 + tmp7;

    /* The rotator is modified from fig 4-8 to avoid extra negations. */
    z5 = (tmp10 - tmp12) * ((FAST_FLOAT) 0.382683433); /* c6 */
    z2 = ((FAST_FLOAT) 0.541196100) * tmp10 + z5; /* c2-c6 */
    z4 = ((FAST_FLOAT) 1.306562965) * tmp12 + z5; /* c2+c6 */
    z3 = tmp11 * ((FAST_FLOAT) 0.707106781); /* c4 */

    z11 = tmp7 + z3;		/* phase 5 */
    z13 = tmp7 - z3;

    dataptr[DCTSIZE*5] = z13 + z2; /* phase 6 */
    dataptr[DCTSIZE*3] = z13 - z2;
    dataptr[DCTSIZE*1] = z11 + z4;
    dataptr[DCTSIZE*7] = z11 - z4;

    dataptr++;			/* advance pointer to next column */
  }
}

#endif /* DCT_FLOAT_SUPPORTED */