mpi.c 103 KB
Newer Older
1 2 3 4 5 6 7 8
/*
 * dlls/rsaenh/mpi.c
 * Multi Precision Integer functions
 *
 * Copyright 2004 Michael Jung
 * Based on public domain code by Tom St Denis (tomstdenis@iahu.ca)
 *
 * This library is free software; you can redistribute it and/or
9
 * modify it under the terms of the GNU Lesser General Public
10 11 12 13 14 15 16 17 18 19
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with this library; if not, write to the Free Software
20
 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA
21 22 23 24 25 26 27 28 29 30 31
 */

/*
 * This file contains code from the LibTomCrypt cryptographic 
 * library written by Tom St Denis (tomstdenis@iahu.ca). LibTomCrypt
 * is in the public domain. The code in this file is tailored to
 * special requirements. Take a look at http://libtomcrypt.org for the
 * original version. 
 */

#include <stdarg.h>
32 33 34

#include "windef.h"
#include "winbase.h"
35 36
#include "tomcrypt.h"

37 38 39 40 41 42 43 44
/* Known optimal configurations
 CPU                    /Compiler     /MUL CUTOFF/SQR CUTOFF
-------------------------------------------------------------
 Intel P4 Northwood     /GCC v3.4.1   /        88/       128/LTM 0.32 ;-)
*/
static const int KARATSUBA_MUL_CUTOFF = 88,  /* Min. number of digits before Karatsuba multiplication is used. */
                 KARATSUBA_SQR_CUTOFF = 128; /* Min. number of digits before Karatsuba squaring is used. */

45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91

/* trim unused digits */
static void mp_clamp(mp_int *a);

/* compare |a| to |b| */
static int mp_cmp_mag(const mp_int *a, const mp_int *b);

/* Counts the number of lsbs which are zero before the first zero bit */
static int mp_cnt_lsb(const mp_int *a);

/* computes a = B**n mod b without division or multiplication useful for
 * normalizing numbers in a Montgomery system.
 */
static int mp_montgomery_calc_normalization(mp_int *a, const mp_int *b);

/* computes x/R == x (mod N) via Montgomery Reduction */
static int mp_montgomery_reduce(mp_int *a, const mp_int *m, mp_digit mp);

/* setups the montgomery reduction */
static int mp_montgomery_setup(const mp_int *a, mp_digit *mp);

/* Barrett Reduction, computes a (mod b) with a precomputed value c
 *
 * Assumes that 0 < a <= b*b, note if 0 > a > -(b*b) then you can merely
 * compute the reduction as -1 * mp_reduce(mp_abs(a)) [pseudo code].
 */
static int mp_reduce(mp_int *a, const mp_int *b, const mp_int *c);

/* reduces a modulo b where b is of the form 2**p - k [0 <= a] */
static int mp_reduce_2k(mp_int *a, const mp_int *n, mp_digit d);

/* determines k value for 2k reduction */
static int mp_reduce_2k_setup(const mp_int *a, mp_digit *d);

/* used to setup the Barrett reduction for a given modulus b */
static int mp_reduce_setup(mp_int *a, const mp_int *b);

/* set to a digit */
static void mp_set(mp_int *a, mp_digit b);

/* b = a*a  */
static int mp_sqr(const mp_int *a, mp_int *b);

/* c = a * a (mod b) */
static int mp_sqrmod(const mp_int *a, mp_int *b, mp_int *c);


92 93 94 95 96 97 98 99 100 101 102 103 104
static void bn_reverse(unsigned char *s, int len);
static int s_mp_add(mp_int *a, mp_int *b, mp_int *c);
static int s_mp_exptmod (const mp_int * G, const mp_int * X, mp_int * P, mp_int * Y);
#define s_mp_mul(a, b, c) s_mp_mul_digs(a, b, c, (a)->used + (b)->used + 1)
static int s_mp_mul_digs(const mp_int *a, const mp_int *b, mp_int *c, int digs);
static int s_mp_mul_high_digs(const mp_int *a, const mp_int *b, mp_int *c, int digs);
static int s_mp_sqr(const mp_int *a, mp_int *b);
static int s_mp_sub(const mp_int *a, const mp_int *b, mp_int *c);
static int mp_exptmod_fast(const mp_int *G, const mp_int *X, mp_int *P, mp_int *Y, int mode);
static int mp_invmod_slow (const mp_int * a, mp_int * b, mp_int * c);
static int mp_karatsuba_mul(const mp_int *a, const mp_int *b, mp_int *c);
static int mp_karatsuba_sqr(const mp_int *a, mp_int *b);

105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121
/* grow as required */
static int mp_grow (mp_int * a, int size)
{
  int     i;
  mp_digit *tmp;

  /* if the alloc size is smaller alloc more ram */
  if (a->alloc < size) {
    /* ensure there are always at least MP_PREC digits extra on top */
    size += (MP_PREC * 2) - (size % MP_PREC);

    /* reallocate the array a->dp
     *
     * We store the return in a temporary variable
     * in case the operation failed we don't want
     * to overwrite the dp member of a.
     */
122
    tmp = HeapReAlloc(GetProcessHeap(), 0, a->dp, sizeof (mp_digit) * size);
123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
    if (tmp == NULL) {
      /* reallocation failed but "a" is still valid [can be freed] */
      return MP_MEM;
    }

    /* reallocation succeeded so set a->dp */
    a->dp = tmp;

    /* zero excess digits */
    i        = a->alloc;
    a->alloc = size;
    for (; i < a->alloc; i++) {
      a->dp[i] = 0;
    }
  }
  return MP_OKAY;
}

141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187
/* b = a/2 */
static int mp_div_2(const mp_int * a, mp_int * b)
{
  int     x, res, oldused;

  /* copy */
  if (b->alloc < a->used) {
    if ((res = mp_grow (b, a->used)) != MP_OKAY) {
      return res;
    }
  }

  oldused = b->used;
  b->used = a->used;
  {
    register mp_digit r, rr, *tmpa, *tmpb;

    /* source alias */
    tmpa = a->dp + b->used - 1;

    /* dest alias */
    tmpb = b->dp + b->used - 1;

    /* carry */
    r = 0;
    for (x = b->used - 1; x >= 0; x--) {
      /* get the carry for the next iteration */
      rr = *tmpa & 1;

      /* shift the current digit, add in carry and store */
      *tmpb-- = (*tmpa-- >> 1) | (r << (DIGIT_BIT - 1));

      /* forward carry to next iteration */
      r = rr;
    }

    /* zero excess digits */
    tmpb = b->dp + b->used;
    for (x = b->used; x < oldused; x++) {
      *tmpb++ = 0;
    }
  }
  b->sign = a->sign;
  mp_clamp (b);
  return MP_OKAY;
}

188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206
/* swap the elements of two integers, for cases where you can't simply swap the
 * mp_int pointers around
 */
static void
mp_exch (mp_int * a, mp_int * b)
{
  mp_int  t;

  t  = *a;
  *a = *b;
  *b = t;
}

/* init a new mp_int */
static int mp_init (mp_int * a)
{
  int i;

  /* allocate memory required and clear it */
207
  a->dp = HeapAlloc(GetProcessHeap(), 0, sizeof (mp_digit) * MP_PREC);
208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234
  if (a->dp == NULL) {
    return MP_MEM;
  }

  /* set the digits to zero */
  for (i = 0; i < MP_PREC; i++) {
      a->dp[i] = 0;
  }

  /* set the used to zero, allocated digits to the default precision
   * and sign to positive */
  a->used  = 0;
  a->alloc = MP_PREC;
  a->sign  = MP_ZPOS;

  return MP_OKAY;
}

/* init an mp_init for a given size */
static int mp_init_size (mp_int * a, int size)
{
  int x;

  /* pad size so there are always extra digits */
  size += (MP_PREC * 2) - (size % MP_PREC);

  /* alloc mem */
235
  a->dp = HeapAlloc(GetProcessHeap(), 0, sizeof (mp_digit) * size);
236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266
  if (a->dp == NULL) {
    return MP_MEM;
  }

  /* set the members */
  a->used  = 0;
  a->alloc = size;
  a->sign  = MP_ZPOS;

  /* zero the digits */
  for (x = 0; x < size; x++) {
      a->dp[x] = 0;
  }

  return MP_OKAY;
}

/* clear one (frees)  */
static void
mp_clear (mp_int * a)
{
  int i;

  /* only do anything if a hasn't been freed previously */
  if (a->dp != NULL) {
    /* first zero the digits */
    for (i = 0; i < a->used; i++) {
        a->dp[i] = 0;
    }

    /* free ram */
267
    HeapFree(GetProcessHeap(), 0, a->dp);
268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284

    /* reset members to make debugging easier */
    a->dp    = NULL;
    a->alloc = a->used = 0;
    a->sign  = MP_ZPOS;
  }
}

/* set to zero */
static void
mp_zero (mp_int * a)
{
  a->sign = MP_ZPOS;
  a->used = 0;
  memset (a->dp, 0, sizeof (mp_digit) * a->alloc);
}

285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306
/* b = |a|
 *
 * Simple function copies the input and fixes the sign to positive
 */
static int
mp_abs (const mp_int * a, mp_int * b)
{
  int     res;

  /* copy a to b */
  if (a != b) {
     if ((res = mp_copy (a, b)) != MP_OKAY) {
       return res;
     }
  }

  /* force the sign of b to positive */
  b->sign = MP_ZPOS;

  return MP_OKAY;
}

307 308 309 310 311 312
/* computes the modular inverse via binary extended euclidean algorithm, 
 * that is c = 1/a mod b 
 *
 * Based on slow invmod except this is optimized for the case where b is 
 * odd as per HAC Note 14.64 on pp. 610
 */
313
static int
314
fast_mp_invmod (const mp_int * a, mp_int * b, mp_int * c)
315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442
{
  mp_int  x, y, u, v, B, D;
  int     res, neg;

  /* 2. [modified] b must be odd   */
  if (mp_iseven (b) == 1) {
    return MP_VAL;
  }

  /* init all our temps */
  if ((res = mp_init_multi(&x, &y, &u, &v, &B, &D, NULL)) != MP_OKAY) {
     return res;
  }

  /* x == modulus, y == value to invert */
  if ((res = mp_copy (b, &x)) != MP_OKAY) {
    goto __ERR;
  }

  /* we need y = |a| */
  if ((res = mp_abs (a, &y)) != MP_OKAY) {
    goto __ERR;
  }

  /* 3. u=x, v=y, A=1, B=0, C=0,D=1 */
  if ((res = mp_copy (&x, &u)) != MP_OKAY) {
    goto __ERR;
  }
  if ((res = mp_copy (&y, &v)) != MP_OKAY) {
    goto __ERR;
  }
  mp_set (&D, 1);

top:
  /* 4.  while u is even do */
  while (mp_iseven (&u) == 1) {
    /* 4.1 u = u/2 */
    if ((res = mp_div_2 (&u, &u)) != MP_OKAY) {
      goto __ERR;
    }
    /* 4.2 if B is odd then */
    if (mp_isodd (&B) == 1) {
      if ((res = mp_sub (&B, &x, &B)) != MP_OKAY) {
        goto __ERR;
      }
    }
    /* B = B/2 */
    if ((res = mp_div_2 (&B, &B)) != MP_OKAY) {
      goto __ERR;
    }
  }

  /* 5.  while v is even do */
  while (mp_iseven (&v) == 1) {
    /* 5.1 v = v/2 */
    if ((res = mp_div_2 (&v, &v)) != MP_OKAY) {
      goto __ERR;
    }
    /* 5.2 if D is odd then */
    if (mp_isodd (&D) == 1) {
      /* D = (D-x)/2 */
      if ((res = mp_sub (&D, &x, &D)) != MP_OKAY) {
        goto __ERR;
      }
    }
    /* D = D/2 */
    if ((res = mp_div_2 (&D, &D)) != MP_OKAY) {
      goto __ERR;
    }
  }

  /* 6.  if u >= v then */
  if (mp_cmp (&u, &v) != MP_LT) {
    /* u = u - v, B = B - D */
    if ((res = mp_sub (&u, &v, &u)) != MP_OKAY) {
      goto __ERR;
    }

    if ((res = mp_sub (&B, &D, &B)) != MP_OKAY) {
      goto __ERR;
    }
  } else {
    /* v - v - u, D = D - B */
    if ((res = mp_sub (&v, &u, &v)) != MP_OKAY) {
      goto __ERR;
    }

    if ((res = mp_sub (&D, &B, &D)) != MP_OKAY) {
      goto __ERR;
    }
  }

  /* if not zero goto step 4 */
  if (mp_iszero (&u) == 0) {
    goto top;
  }

  /* now a = C, b = D, gcd == g*v */

  /* if v != 1 then there is no inverse */
  if (mp_cmp_d (&v, 1) != MP_EQ) {
    res = MP_VAL;
    goto __ERR;
  }

  /* b is now the inverse */
  neg = a->sign;
  while (D.sign == MP_NEG) {
    if ((res = mp_add (&D, b, &D)) != MP_OKAY) {
      goto __ERR;
    }
  }
  mp_exch (&D, c);
  c->sign = neg;
  res = MP_OKAY;

__ERR:mp_clear_multi (&x, &y, &u, &v, &B, &D, NULL);
  return res;
}

/* computes xR**-1 == x (mod N) via Montgomery Reduction
 *
 * This is an optimized implementation of montgomery_reduce
 * which uses the comba method to quickly calculate the columns of the
 * reduction.
 *
 * Based on Algorithm 14.32 on pp.601 of HAC.
*/
443
static int
444
fast_mp_montgomery_reduce (mp_int * x, const mp_int * n, mp_digit rho)
445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498
{
  int     ix, res, olduse;
  mp_word W[MP_WARRAY];

  /* get old used count */
  olduse = x->used;

  /* grow a as required */
  if (x->alloc < n->used + 1) {
    if ((res = mp_grow (x, n->used + 1)) != MP_OKAY) {
      return res;
    }
  }

  /* first we have to get the digits of the input into
   * an array of double precision words W[...]
   */
  {
    register mp_word *_W;
    register mp_digit *tmpx;

    /* alias for the W[] array */
    _W   = W;

    /* alias for the digits of  x*/
    tmpx = x->dp;

    /* copy the digits of a into W[0..a->used-1] */
    for (ix = 0; ix < x->used; ix++) {
      *_W++ = *tmpx++;
    }

    /* zero the high words of W[a->used..m->used*2] */
    for (; ix < n->used * 2 + 1; ix++) {
      *_W++ = 0;
    }
  }

  /* now we proceed to zero successive digits
   * from the least significant upwards
   */
  for (ix = 0; ix < n->used; ix++) {
    /* mu = ai * m' mod b
     *
     * We avoid a double precision multiplication (which isn't required)
     * by casting the value down to a mp_digit.  Note this requires
     * that W[ix-1] have  the carry cleared (see after the inner loop)
     */
    register mp_digit mu;
    mu = (mp_digit) (((W[ix] & MP_MASK) * rho) & MP_MASK);

    /* a = a + mu * m * b**i
     *
     * This is computed in place and on the fly.  The multiplication
499
     * by b**i is handled by offsetting which columns the results
500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602
     * are added to.
     *
     * Note the comba method normally doesn't handle carries in the
     * inner loop In this case we fix the carry from the previous
     * column since the Montgomery reduction requires digits of the
     * result (so far) [see above] to work.  This is
     * handled by fixing up one carry after the inner loop.  The
     * carry fixups are done in order so after these loops the
     * first m->used words of W[] have the carries fixed
     */
    {
      register int iy;
      register mp_digit *tmpn;
      register mp_word *_W;

      /* alias for the digits of the modulus */
      tmpn = n->dp;

      /* Alias for the columns set by an offset of ix */
      _W = W + ix;

      /* inner loop */
      for (iy = 0; iy < n->used; iy++) {
          *_W++ += ((mp_word)mu) * ((mp_word)*tmpn++);
      }
    }

    /* now fix carry for next digit, W[ix+1] */
    W[ix + 1] += W[ix] >> ((mp_word) DIGIT_BIT);
  }

  /* now we have to propagate the carries and
   * shift the words downward [all those least
   * significant digits we zeroed].
   */
  {
    register mp_digit *tmpx;
    register mp_word *_W, *_W1;

    /* nox fix rest of carries */

    /* alias for current word */
    _W1 = W + ix;

    /* alias for next word, where the carry goes */
    _W = W + ++ix;

    for (; ix <= n->used * 2 + 1; ix++) {
      *_W++ += *_W1++ >> ((mp_word) DIGIT_BIT);
    }

    /* copy out, A = A/b**n
     *
     * The result is A/b**n but instead of converting from an
     * array of mp_word to mp_digit than calling mp_rshd
     * we just copy them in the right order
     */

    /* alias for destination word */
    tmpx = x->dp;

    /* alias for shifted double precision result */
    _W = W + n->used;

    for (ix = 0; ix < n->used + 1; ix++) {
      *tmpx++ = (mp_digit)(*_W++ & ((mp_word) MP_MASK));
    }

    /* zero oldused digits, if the input a was larger than
     * m->used+1 we'll have to clear the digits
     */
    for (; ix < olduse; ix++) {
      *tmpx++ = 0;
    }
  }

  /* set the max used and clamp */
  x->used = n->used + 1;
  mp_clamp (x);

  /* if A >= m then A = A - m */
  if (mp_cmp_mag (x, n) != MP_LT) {
    return s_mp_sub (x, n, x);
  }
  return MP_OKAY;
}

/* Fast (comba) multiplier
 *
 * This is the fast column-array [comba] multiplier.  It is 
 * designed to compute the columns of the product first 
 * then handle the carries afterwards.  This has the effect 
 * of making the nested loops that compute the columns very
 * simple and schedulable on super-scalar processors.
 *
 * This has been modified to produce a variable number of 
 * digits of output so if say only a half-product is required 
 * you don't have to compute the upper half (a feature 
 * required for fast Barrett reduction).
 *
 * Based on Algorithm 14.12 on pp.595 of HAC.
 *
 */
603
static int
604
fast_s_mp_mul_digs (const mp_int * a, const mp_int * b, mp_int * c, int digs)
605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634
{
  int     olduse, res, pa, ix, iz;
  mp_digit W[MP_WARRAY];
  register mp_word  _W;

  /* grow the destination as required */
  if (c->alloc < digs) {
    if ((res = mp_grow (c, digs)) != MP_OKAY) {
      return res;
    }
  }

  /* number of output digits to produce */
  pa = MIN(digs, a->used + b->used);

  /* clear the carry */
  _W = 0;
  for (ix = 0; ix <= pa; ix++) { 
      int      tx, ty;
      int      iy;
      mp_digit *tmpx, *tmpy;

      /* get offsets into the two bignums */
      ty = MIN(b->used-1, ix);
      tx = ix - ty;

      /* setup temp aliases */
      tmpx = a->dp + tx;
      tmpy = b->dp + ty;

Austin English's avatar
Austin English committed
635
      /* This is the number of times the loop will iterate, essentially it's
636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681
         while (tx++ < a->used && ty-- >= 0) { ... }
       */
      iy = MIN(a->used-tx, ty+1);

      /* execute loop */
      for (iz = 0; iz < iy; ++iz) {
         _W += ((mp_word)*tmpx++)*((mp_word)*tmpy--);
      }

      /* store term */
      W[ix] = ((mp_digit)_W) & MP_MASK;

      /* make next carry */
      _W = _W >> ((mp_word)DIGIT_BIT);
  }

  /* setup dest */
  olduse  = c->used;
  c->used = digs;

  {
    register mp_digit *tmpc;
    tmpc = c->dp;
    for (ix = 0; ix < digs; ix++) {
      /* now extract the previous digit [below the carry] */
      *tmpc++ = W[ix];
    }

    /* clear unused digits [that existed in the old copy of c] */
    for (; ix < olduse; ix++) {
      *tmpc++ = 0;
    }
  }
  mp_clamp (c);
  return MP_OKAY;
}

/* this is a modified version of fast_s_mul_digs that only produces
 * output digits *above* digs.  See the comments for fast_s_mul_digs
 * to see how it works.
 *
 * This is used in the Barrett reduction since for one of the multiplications
 * only the higher digits were needed.  This essentially halves the work.
 *
 * Based on Algorithm 14.12 on pp.595 of HAC.
 */
682
static int
683
fast_s_mp_mul_high_digs (const mp_int * a, const mp_int * b, mp_int * c, int digs)
684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711
{
  int     olduse, res, pa, ix, iz;
  mp_digit W[MP_WARRAY];
  mp_word  _W;

  /* grow the destination as required */
  pa = a->used + b->used;
  if (c->alloc < pa) {
    if ((res = mp_grow (c, pa)) != MP_OKAY) {
      return res;
    }
  }

  /* number of output digits to produce */
  pa = a->used + b->used;
  _W = 0;
  for (ix = digs; ix <= pa; ix++) { 
      int      tx, ty, iy;
      mp_digit *tmpx, *tmpy;

      /* get offsets into the two bignums */
      ty = MIN(b->used-1, ix);
      tx = ix - ty;

      /* setup temp aliases */
      tmpx = a->dp + tx;
      tmpy = b->dp + ty;

Austin English's avatar
Austin English committed
712
      /* This is the number of times the loop will iterate, essentially it's
713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779
         while (tx++ < a->used && ty-- >= 0) { ... }
       */
      iy = MIN(a->used-tx, ty+1);

      /* execute loop */
      for (iz = 0; iz < iy; iz++) {
         _W += ((mp_word)*tmpx++)*((mp_word)*tmpy--);
      }

      /* store term */
      W[ix] = ((mp_digit)_W) & MP_MASK;

      /* make next carry */
      _W = _W >> ((mp_word)DIGIT_BIT);
  }

  /* setup dest */
  olduse  = c->used;
  c->used = pa;

  {
    register mp_digit *tmpc;

    tmpc = c->dp + digs;
    for (ix = digs; ix <= pa; ix++) {
      /* now extract the previous digit [below the carry] */
      *tmpc++ = W[ix];
    }

    /* clear unused digits [that existed in the old copy of c] */
    for (; ix < olduse; ix++) {
      *tmpc++ = 0;
    }
  }
  mp_clamp (c);
  return MP_OKAY;
}

/* fast squaring
 *
 * This is the comba method where the columns of the product
 * are computed first then the carries are computed.  This
 * has the effect of making a very simple inner loop that
 * is executed the most
 *
 * W2 represents the outer products and W the inner.
 *
 * A further optimizations is made because the inner
 * products are of the form "A * B * 2".  The *2 part does
 * not need to be computed until the end which is good
 * because 64-bit shifts are slow!
 *
 * Based on Algorithm 14.16 on pp.597 of HAC.
 *
 */
/* the jist of squaring...

you do like mult except the offset of the tmpx [one that starts closer to zero]
can't equal the offset of tmpy.  So basically you set up iy like before then you min it with
(ty-tx) so that it never happens.  You double all those you add in the inner loop

After that loop you do the squares and add them in.

Remove W2 and don't memset W

*/

780
static int fast_s_mp_sqr (const mp_int * a, mp_int * b)
781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811
{
  int       olduse, res, pa, ix, iz;
  mp_digit   W[MP_WARRAY], *tmpx;
  mp_word   W1;

  /* grow the destination as required */
  pa = a->used + a->used;
  if (b->alloc < pa) {
    if ((res = mp_grow (b, pa)) != MP_OKAY) {
      return res;
    }
  }

  /* number of output digits to produce */
  W1 = 0;
  for (ix = 0; ix <= pa; ix++) { 
      int      tx, ty, iy;
      mp_word  _W;
      mp_digit *tmpy;

      /* clear counter */
      _W = 0;

      /* get offsets into the two bignums */
      ty = MIN(a->used-1, ix);
      tx = ix - ty;

      /* setup temp aliases */
      tmpx = a->dp + tx;
      tmpy = a->dp + ty;

Austin English's avatar
Austin English committed
812
      /* This is the number of times the loop will iterate, essentially it's
813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867
         while (tx++ < a->used && ty-- >= 0) { ... }
       */
      iy = MIN(a->used-tx, ty+1);

      /* now for squaring tx can never equal ty 
       * we halve the distance since they approach at a rate of 2x
       * and we have to round because odd cases need to be executed
       */
      iy = MIN(iy, (ty-tx+1)>>1);

      /* execute loop */
      for (iz = 0; iz < iy; iz++) {
         _W += ((mp_word)*tmpx++)*((mp_word)*tmpy--);
      }

      /* double the inner product and add carry */
      _W = _W + _W + W1;

      /* even columns have the square term in them */
      if ((ix&1) == 0) {
         _W += ((mp_word)a->dp[ix>>1])*((mp_word)a->dp[ix>>1]);
      }

      /* store it */
      W[ix] = _W;

      /* make next carry */
      W1 = _W >> ((mp_word)DIGIT_BIT);
  }

  /* setup dest */
  olduse  = b->used;
  b->used = a->used+a->used;

  {
    mp_digit *tmpb;
    tmpb = b->dp;
    for (ix = 0; ix < pa; ix++) {
      *tmpb++ = W[ix] & MP_MASK;
    }

    /* clear unused digits [that existed in the old copy of c] */
    for (; ix < olduse; ix++) {
      *tmpb++ = 0;
    }
  }
  mp_clamp (b);
  return MP_OKAY;
}

/* computes a = 2**b 
 *
 * Simple algorithm which zeroes the int, grows it then just sets one bit
 * as required.
 */
868
static int
869 870 871 872 873 874 875
mp_2expt (mp_int * a, int b)
{
  int     res;

  /* zero a as per default */
  mp_zero (a);

876
  /* grow a to accommodate the single bit */
877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922
  if ((res = mp_grow (a, b / DIGIT_BIT + 1)) != MP_OKAY) {
    return res;
  }

  /* set the used count of where the bit will go */
  a->used = b / DIGIT_BIT + 1;

  /* put the single bit in its place */
  a->dp[b / DIGIT_BIT] = ((mp_digit)1) << (b % DIGIT_BIT);

  return MP_OKAY;
}

/* high level addition (handles signs) */
int mp_add (mp_int * a, mp_int * b, mp_int * c)
{
  int     sa, sb, res;

  /* get sign of both inputs */
  sa = a->sign;
  sb = b->sign;

  /* handle two cases, not four */
  if (sa == sb) {
    /* both positive or both negative */
    /* add their magnitudes, copy the sign */
    c->sign = sa;
    res = s_mp_add (a, b, c);
  } else {
    /* one positive, the other negative */
    /* subtract the one with the greater magnitude from */
    /* the one of the lesser magnitude.  The result gets */
    /* the sign of the one with the greater magnitude. */
    if (mp_cmp_mag (a, b) == MP_LT) {
      c->sign = sb;
      res = s_mp_sub (b, a, c);
    } else {
      c->sign = sa;
      res = s_mp_sub (a, b, c);
    }
  }
  return res;
}


/* single digit addition */
923
static int
924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045
mp_add_d (mp_int * a, mp_digit b, mp_int * c)
{
  int     res, ix, oldused;
  mp_digit *tmpa, *tmpc, mu;

  /* grow c as required */
  if (c->alloc < a->used + 1) {
     if ((res = mp_grow(c, a->used + 1)) != MP_OKAY) {
        return res;
     }
  }

  /* if a is negative and |a| >= b, call c = |a| - b */
  if (a->sign == MP_NEG && (a->used > 1 || a->dp[0] >= b)) {
     /* temporarily fix sign of a */
     a->sign = MP_ZPOS;

     /* c = |a| - b */
     res = mp_sub_d(a, b, c);

     /* fix sign  */
     a->sign = c->sign = MP_NEG;

     return res;
  }

  /* old number of used digits in c */
  oldused = c->used;

  /* sign always positive */
  c->sign = MP_ZPOS;

  /* source alias */
  tmpa    = a->dp;

  /* destination alias */
  tmpc    = c->dp;

  /* if a is positive */
  if (a->sign == MP_ZPOS) {
     /* add digit, after this we're propagating
      * the carry.
      */
     *tmpc   = *tmpa++ + b;
     mu      = *tmpc >> DIGIT_BIT;
     *tmpc++ &= MP_MASK;

     /* now handle rest of the digits */
     for (ix = 1; ix < a->used; ix++) {
        *tmpc   = *tmpa++ + mu;
        mu      = *tmpc >> DIGIT_BIT;
        *tmpc++ &= MP_MASK;
     }
     /* set final carry */
     ix++;
     *tmpc++  = mu;

     /* setup size */
     c->used = a->used + 1;
  } else {
     /* a was negative and |a| < b */
     c->used  = 1;

     /* the result is a single digit */
     if (a->used == 1) {
        *tmpc++  =  b - a->dp[0];
     } else {
        *tmpc++  =  b;
     }

     /* setup count so the clearing of oldused
      * can fall through correctly
      */
     ix       = 1;
  }

  /* now zero to oldused */
  while (ix++ < oldused) {
     *tmpc++ = 0;
  }
  mp_clamp(c);

  return MP_OKAY;
}

/* trim unused digits 
 *
 * This is used to ensure that leading zero digits are
 * trimed and the leading "used" digit will be non-zero
 * Typically very fast.  Also fixes the sign if there
 * are no more leading digits
 */
void
mp_clamp (mp_int * a)
{
  /* decrease used while the most significant digit is
   * zero.
   */
  while (a->used > 0 && a->dp[a->used - 1] == 0) {
    --(a->used);
  }

  /* reset the sign flag if used == 0 */
  if (a->used == 0) {
    a->sign = MP_ZPOS;
  }
}

void mp_clear_multi(mp_int *mp, ...) 
{
    mp_int* next_mp = mp;
    va_list args;
    va_start(args, mp);
    while (next_mp != NULL) {
        mp_clear(next_mp);
        next_mp = va_arg(args, mp_int*);
    }
    va_end(args);
}

/* compare two ints (signed)*/
int
1046
mp_cmp (const mp_int * a, const mp_int * b)
1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066
{
  /* compare based on sign */
  if (a->sign != b->sign) {
     if (a->sign == MP_NEG) {
        return MP_LT;
     } else {
        return MP_GT;
     }
  }
  
  /* compare digits */
  if (a->sign == MP_NEG) {
     /* if negative compare opposite direction */
     return mp_cmp_mag(b, a);
  } else {
     return mp_cmp_mag(a, b);
  }
}

/* compare a digit */
1067
int mp_cmp_d(const mp_int * a, mp_digit b)
1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089
{
  /* compare based on sign */
  if (a->sign == MP_NEG) {
    return MP_LT;
  }

  /* compare based on magnitude */
  if (a->used > 1) {
    return MP_GT;
  }

  /* compare the only digit of a to b */
  if (a->dp[0] > b) {
    return MP_GT;
  } else if (a->dp[0] < b) {
    return MP_LT;
  } else {
    return MP_EQ;
  }
}

/* compare maginitude of two ints (unsigned) */
1090
int mp_cmp_mag (const mp_int * a, const mp_int * b)
1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127
{
  int     n;
  mp_digit *tmpa, *tmpb;

  /* compare based on # of non-zero digits */
  if (a->used > b->used) {
    return MP_GT;
  }
  
  if (a->used < b->used) {
    return MP_LT;
  }

  /* alias for a */
  tmpa = a->dp + (a->used - 1);

  /* alias for b */
  tmpb = b->dp + (a->used - 1);

  /* compare based on digits  */
  for (n = 0; n < a->used; ++n, --tmpa, --tmpb) {
    if (*tmpa > *tmpb) {
      return MP_GT;
    }

    if (*tmpa < *tmpb) {
      return MP_LT;
    }
  }
  return MP_EQ;
}

static const int lnz[16] = { 
   4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0
};

/* Counts the number of lsbs which are zero before the first zero bit */
1128
int mp_cnt_lsb(const mp_int *a)
1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202
{
   int x;
   mp_digit q, qq;

   /* easy out */
   if (mp_iszero(a) == 1) {
      return 0;
   }

   /* scan lower digits until non-zero */
   for (x = 0; x < a->used && a->dp[x] == 0; x++);
   q = a->dp[x];
   x *= DIGIT_BIT;

   /* now scan this digit until a 1 is found */
   if ((q & 1) == 0) {
      do {
         qq  = q & 15;
         x  += lnz[qq];
         q >>= 4;
      } while (qq == 0);
   }
   return x;
}

/* copy, b = a */
int
mp_copy (const mp_int * a, mp_int * b)
{
  int     res, n;

  /* if dst == src do nothing */
  if (a == b) {
    return MP_OKAY;
  }

  /* grow dest */
  if (b->alloc < a->used) {
     if ((res = mp_grow (b, a->used)) != MP_OKAY) {
        return res;
     }
  }

  /* zero b and copy the parameters over */
  {
    register mp_digit *tmpa, *tmpb;

    /* pointer aliases */

    /* source */
    tmpa = a->dp;

    /* destination */
    tmpb = b->dp;

    /* copy all the digits */
    for (n = 0; n < a->used; n++) {
      *tmpb++ = *tmpa++;
    }

    /* clear high digits */
    for (; n < b->used; n++) {
      *tmpb++ = 0;
    }
  }

  /* copy used count and sign */
  b->used = a->used;
  b->sign = a->sign;
  return MP_OKAY;
}

/* returns the number of bits in an int */
int
1203
mp_count_bits (const mp_int * a)
1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217
{
  int     r;
  mp_digit q;

  /* shortcut */
  if (a->used == 0) {
    return 0;
  }

  /* get number of digits and add that */
  r = (a->used - 1) * DIGIT_BIT;
  
  /* take the last digit and count the bits in it */
  q = a->dp[a->used - 1];
1218
  while (q > 0) {
1219 1220 1221 1222 1223 1224
    ++r;
    q >>= ((mp_digit) 1);
  }
  return r;
}

1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257
/* calc a value mod 2**b */
static int
mp_mod_2d (const mp_int * a, int b, mp_int * c)
{
  int     x, res;

  /* if b is <= 0 then zero the int */
  if (b <= 0) {
    mp_zero (c);
    return MP_OKAY;
  }

  /* if the modulus is larger than the value than return */
  if (b > a->used * DIGIT_BIT) {
    res = mp_copy (a, c);
    return res;
  }

  /* copy */
  if ((res = mp_copy (a, c)) != MP_OKAY) {
    return res;
  }

  /* zero digits above the last digit of the modulus */
  for (x = (b / DIGIT_BIT) + ((b % DIGIT_BIT) == 0 ? 0 : 1); x < c->used; x++) {
    c->dp[x] = 0;
  }
  /* clear the digit that is not completely outside/inside the modulus */
  c->dp[b / DIGIT_BIT] &= (1 << ((mp_digit)b % DIGIT_BIT)) - 1;
  mp_clamp (c);
  return MP_OKAY;
}

1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308
/* shift right a certain amount of digits */
static void mp_rshd (mp_int * a, int b)
{
  int     x;

  /* if b <= 0 then ignore it */
  if (b <= 0) {
    return;
  }

  /* if b > used then simply zero it and return */
  if (a->used <= b) {
    mp_zero (a);
    return;
  }

  {
    register mp_digit *bottom, *top;

    /* shift the digits down */

    /* bottom */
    bottom = a->dp;

    /* top [offset into digits] */
    top = a->dp + b;

    /* this is implemented as a sliding window where
     * the window is b-digits long and digits from
     * the top of the window are copied to the bottom
     *
     * e.g.

     b-2 | b-1 | b0 | b1 | b2 | ... | bb |   ---->
                 /\                   |      ---->
                  \-------------------/      ---->
     */
    for (x = 0; x < (a->used - b); x++) {
      *bottom++ = *top++;
    }

    /* zero the top digits */
    for (; x < a->used; x++) {
      *bottom++ = 0;
    }
  }

  /* remove excess digits */
  a->used -= b;
}

1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384
/* shift right by a certain bit count (store quotient in c, optional remainder in d) */
static int mp_div_2d (const mp_int * a, int b, mp_int * c, mp_int * d)
{
  mp_digit D, r, rr;
  int     x, res;
  mp_int  t;


  /* if the shift count is <= 0 then we do no work */
  if (b <= 0) {
    res = mp_copy (a, c);
    if (d != NULL) {
      mp_zero (d);
    }
    return res;
  }

  if ((res = mp_init (&t)) != MP_OKAY) {
    return res;
  }

  /* get the remainder */
  if (d != NULL) {
    if ((res = mp_mod_2d (a, b, &t)) != MP_OKAY) {
      mp_clear (&t);
      return res;
    }
  }

  /* copy */
  if ((res = mp_copy (a, c)) != MP_OKAY) {
    mp_clear (&t);
    return res;
  }

  /* shift by as many digits in the bit count */
  if (b >= DIGIT_BIT) {
    mp_rshd (c, b / DIGIT_BIT);
  }

  /* shift any bit count < DIGIT_BIT */
  D = (mp_digit) (b % DIGIT_BIT);
  if (D != 0) {
    register mp_digit *tmpc, mask, shift;

    /* mask */
    mask = (((mp_digit)1) << D) - 1;

    /* shift for lsb */
    shift = DIGIT_BIT - D;

    /* alias */
    tmpc = c->dp + (c->used - 1);

    /* carry */
    r = 0;
    for (x = c->used - 1; x >= 0; x--) {
      /* get the lower  bits of this word in a temp */
      rr = *tmpc & mask;

      /* shift the current word and mix in the carry bits from the previous word */
      *tmpc = (*tmpc >> D) | (r << shift);
      --tmpc;

      /* set the carry to the carry bits of the current word found above */
      r = rr;
    }
  }
  mp_clamp (c);
  if (d != NULL) {
    mp_exch (&t, d);
  }
  mp_clear (&t);
  return MP_OKAY;
}

1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414
/* shift left a certain amount of digits */
static int mp_lshd (mp_int * a, int b)
{
  int     x, res;

  /* if its less than zero return */
  if (b <= 0) {
    return MP_OKAY;
  }

  /* grow to fit the new digits */
  if (a->alloc < a->used + b) {
     if ((res = mp_grow (a, a->used + b)) != MP_OKAY) {
       return res;
     }
  }

  {
    register mp_digit *top, *bottom;

    /* increment the used by the shift amount then copy upwards */
    a->used += b;

    /* top */
    top = a->dp + a->used - 1;

    /* base */
    bottom = a->dp + a->used - 1 - b;

    /* much like mp_rshd this is implemented using a sliding window
1415
     * except the window goes the other way around.  Copying from
1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551
     * the bottom to the top.  see bn_mp_rshd.c for more info.
     */
    for (x = a->used - 1; x >= b; x--) {
      *top-- = *bottom--;
    }

    /* zero the lower digits */
    top = a->dp;
    for (x = 0; x < b; x++) {
      *top++ = 0;
    }
  }
  return MP_OKAY;
}

/* shift left by a certain bit count */
static int mp_mul_2d (const mp_int * a, int b, mp_int * c)
{
  mp_digit d;
  int      res;

  /* copy */
  if (a != c) {
     if ((res = mp_copy (a, c)) != MP_OKAY) {
       return res;
     }
  }

  if (c->alloc < c->used + b/DIGIT_BIT + 1) {
     if ((res = mp_grow (c, c->used + b / DIGIT_BIT + 1)) != MP_OKAY) {
       return res;
     }
  }

  /* shift by as many digits in the bit count */
  if (b >= DIGIT_BIT) {
    if ((res = mp_lshd (c, b / DIGIT_BIT)) != MP_OKAY) {
      return res;
    }
  }

  /* shift any bit count < DIGIT_BIT */
  d = (mp_digit) (b % DIGIT_BIT);
  if (d != 0) {
    register mp_digit *tmpc, shift, mask, r, rr;
    register int x;

    /* bitmask for carries */
    mask = (((mp_digit)1) << d) - 1;

    /* shift for msbs */
    shift = DIGIT_BIT - d;

    /* alias */
    tmpc = c->dp;

    /* carry */
    r    = 0;
    for (x = 0; x < c->used; x++) {
      /* get the higher bits of the current word */
      rr = (*tmpc >> shift) & mask;

      /* shift the current word and OR in the carry */
      *tmpc = ((*tmpc << d) | r) & MP_MASK;
      ++tmpc;

      /* set the carry to the carry bits of the current word */
      r = rr;
    }

    /* set final carry */
    if (r != 0) {
       c->dp[(c->used)++] = r;
    }
  }
  mp_clamp (c);
  return MP_OKAY;
}

/* multiply by a digit */
static int
mp_mul_d (const mp_int * a, mp_digit b, mp_int * c)
{
  mp_digit u, *tmpa, *tmpc;
  mp_word  r;
  int      ix, res, olduse;

  /* make sure c is big enough to hold a*b */
  if (c->alloc < a->used + 1) {
    if ((res = mp_grow (c, a->used + 1)) != MP_OKAY) {
      return res;
    }
  }

  /* get the original destinations used count */
  olduse = c->used;

  /* set the sign */
  c->sign = a->sign;

  /* alias for a->dp [source] */
  tmpa = a->dp;

  /* alias for c->dp [dest] */
  tmpc = c->dp;

  /* zero carry */
  u = 0;

  /* compute columns */
  for (ix = 0; ix < a->used; ix++) {
    /* compute product and carry sum for this term */
    r       = ((mp_word) u) + ((mp_word)*tmpa++) * ((mp_word)b);

    /* mask off higher bits to get a single digit */
    *tmpc++ = (mp_digit) (r & ((mp_word) MP_MASK));

    /* send carry into next iteration */
    u       = (mp_digit) (r >> ((mp_word) DIGIT_BIT));
  }

  /* store final carry [if any] */
  *tmpc++ = u;

  /* now zero digits above the top */
  while (ix++ < olduse) {
     *tmpc++ = 0;
  }

  /* set used count */
  c->used = a->used + 1;
  mp_clamp(c);

  return MP_OKAY;
}

1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564
/* integer signed division. 
 * c*b + d == a [e.g. a/b, c=quotient, d=remainder]
 * HAC pp.598 Algorithm 14.20
 *
 * Note that the description in HAC is horribly 
 * incomplete.  For example, it doesn't consider 
 * the case where digits are removed from 'x' in 
 * the inner loop.  It also doesn't consider the 
 * case that y has fewer than three digits, etc..
 *
 * The overall algorithm is as described as 
 * 14.20 from HAC but fixed to treat these cases.
*/
1565
static int mp_div (const mp_int * a, const mp_int * b, mp_int * c, mp_int * d)
1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614
{
  mp_int  q, x, y, t1, t2;
  int     res, n, t, i, norm, neg;

  /* is divisor zero ? */
  if (mp_iszero (b) == 1) {
    return MP_VAL;
  }

  /* if a < b then q=0, r = a */
  if (mp_cmp_mag (a, b) == MP_LT) {
    if (d != NULL) {
      res = mp_copy (a, d);
    } else {
      res = MP_OKAY;
    }
    if (c != NULL) {
      mp_zero (c);
    }
    return res;
  }

  if ((res = mp_init_size (&q, a->used + 2)) != MP_OKAY) {
    return res;
  }
  q.used = a->used + 2;

  if ((res = mp_init (&t1)) != MP_OKAY) {
    goto __Q;
  }

  if ((res = mp_init (&t2)) != MP_OKAY) {
    goto __T1;
  }

  if ((res = mp_init_copy (&x, a)) != MP_OKAY) {
    goto __T2;
  }

  if ((res = mp_init_copy (&y, b)) != MP_OKAY) {
    goto __X;
  }

  /* fix the sign */
  neg = (a->sign == b->sign) ? MP_ZPOS : MP_NEG;
  x.sign = y.sign = MP_ZPOS;

  /* normalize both x and y, ensure that y >= b/2, [b == 2**DIGIT_BIT] */
  norm = mp_count_bits(&y) % DIGIT_BIT;
1615
  if (norm < DIGIT_BIT-1) {
1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761
     norm = (DIGIT_BIT-1) - norm;
     if ((res = mp_mul_2d (&x, norm, &x)) != MP_OKAY) {
       goto __Y;
     }
     if ((res = mp_mul_2d (&y, norm, &y)) != MP_OKAY) {
       goto __Y;
     }
  } else {
     norm = 0;
  }

  /* note hac does 0 based, so if used==5 then its 0,1,2,3,4, e.g. use 4 */
  n = x.used - 1;
  t = y.used - 1;

  /* while (x >= y*b**n-t) do { q[n-t] += 1; x -= y*b**{n-t} } */
  if ((res = mp_lshd (&y, n - t)) != MP_OKAY) { /* y = y*b**{n-t} */
    goto __Y;
  }

  while (mp_cmp (&x, &y) != MP_LT) {
    ++(q.dp[n - t]);
    if ((res = mp_sub (&x, &y, &x)) != MP_OKAY) {
      goto __Y;
    }
  }

  /* reset y by shifting it back down */
  mp_rshd (&y, n - t);

  /* step 3. for i from n down to (t + 1) */
  for (i = n; i >= (t + 1); i--) {
    if (i > x.used) {
      continue;
    }

    /* step 3.1 if xi == yt then set q{i-t-1} to b-1, 
     * otherwise set q{i-t-1} to (xi*b + x{i-1})/yt */
    if (x.dp[i] == y.dp[t]) {
      q.dp[i - t - 1] = ((((mp_digit)1) << DIGIT_BIT) - 1);
    } else {
      mp_word tmp;
      tmp = ((mp_word) x.dp[i]) << ((mp_word) DIGIT_BIT);
      tmp |= ((mp_word) x.dp[i - 1]);
      tmp /= ((mp_word) y.dp[t]);
      if (tmp > (mp_word) MP_MASK)
        tmp = MP_MASK;
      q.dp[i - t - 1] = (mp_digit) (tmp & (mp_word) (MP_MASK));
    }

    /* while (q{i-t-1} * (yt * b + y{t-1})) > 
             xi * b**2 + xi-1 * b + xi-2 
     
       do q{i-t-1} -= 1; 
    */
    q.dp[i - t - 1] = (q.dp[i - t - 1] + 1) & MP_MASK;
    do {
      q.dp[i - t - 1] = (q.dp[i - t - 1] - 1) & MP_MASK;

      /* find left hand */
      mp_zero (&t1);
      t1.dp[0] = (t - 1 < 0) ? 0 : y.dp[t - 1];
      t1.dp[1] = y.dp[t];
      t1.used = 2;
      if ((res = mp_mul_d (&t1, q.dp[i - t - 1], &t1)) != MP_OKAY) {
        goto __Y;
      }

      /* find right hand */
      t2.dp[0] = (i - 2 < 0) ? 0 : x.dp[i - 2];
      t2.dp[1] = (i - 1 < 0) ? 0 : x.dp[i - 1];
      t2.dp[2] = x.dp[i];
      t2.used = 3;
    } while (mp_cmp_mag(&t1, &t2) == MP_GT);

    /* step 3.3 x = x - q{i-t-1} * y * b**{i-t-1} */
    if ((res = mp_mul_d (&y, q.dp[i - t - 1], &t1)) != MP_OKAY) {
      goto __Y;
    }

    if ((res = mp_lshd (&t1, i - t - 1)) != MP_OKAY) {
      goto __Y;
    }

    if ((res = mp_sub (&x, &t1, &x)) != MP_OKAY) {
      goto __Y;
    }

    /* if x < 0 then { x = x + y*b**{i-t-1}; q{i-t-1} -= 1; } */
    if (x.sign == MP_NEG) {
      if ((res = mp_copy (&y, &t1)) != MP_OKAY) {
        goto __Y;
      }
      if ((res = mp_lshd (&t1, i - t - 1)) != MP_OKAY) {
        goto __Y;
      }
      if ((res = mp_add (&x, &t1, &x)) != MP_OKAY) {
        goto __Y;
      }

      q.dp[i - t - 1] = (q.dp[i - t - 1] - 1UL) & MP_MASK;
    }
  }

  /* now q is the quotient and x is the remainder 
   * [which we have to normalize] 
   */
  
  /* get sign before writing to c */
  x.sign = x.used == 0 ? MP_ZPOS : a->sign;

  if (c != NULL) {
    mp_clamp (&q);
    mp_exch (&q, c);
    c->sign = neg;
  }

  if (d != NULL) {
    mp_div_2d (&x, norm, &x, NULL);
    mp_exch (&x, d);
  }

  res = MP_OKAY;

__Y:mp_clear (&y);
__X:mp_clear (&x);
__T2:mp_clear (&t2);
__T1:mp_clear (&t1);
__Q:mp_clear (&q);
  return res;
}

static int s_is_power_of_two(mp_digit b, int *p)
{
   int x;

   for (x = 1; x < DIGIT_BIT; x++) {
      if (b == (((mp_digit)1)<<x)) {
         *p = x;
         return 1;
      }
   }
   return 0;
}

/* single digit division (based on routine from MPI) */
1762
static int mp_div_d (const mp_int * a, mp_digit b, mp_int * c, mp_digit * d)
1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812
{
  mp_int  q;
  mp_word w;
  mp_digit t;
  int     res, ix;

  /* cannot divide by zero */
  if (b == 0) {
     return MP_VAL;
  }

  /* quick outs */
  if (b == 1 || mp_iszero(a) == 1) {
     if (d != NULL) {
        *d = 0;
     }
     if (c != NULL) {
        return mp_copy(a, c);
     }
     return MP_OKAY;
  }

  /* power of two ? */
  if (s_is_power_of_two(b, &ix) == 1) {
     if (d != NULL) {
        *d = a->dp[0] & ((((mp_digit)1)<<ix) - 1);
     }
     if (c != NULL) {
        return mp_div_2d(a, ix, c, NULL);
     }
     return MP_OKAY;
  }

  /* no easy answer [c'est la vie].  Just division */
  if ((res = mp_init_size(&q, a->used)) != MP_OKAY) {
     return res;
  }
  
  q.used = a->used;
  q.sign = a->sign;
  w = 0;
  for (ix = a->used - 1; ix >= 0; ix--) {
     w = (w << ((mp_word)DIGIT_BIT)) | ((mp_word)a->dp[ix]);
     
     if (w >= b) {
        t = (mp_digit)(w / b);
        w -= ((mp_word)t) * ((mp_word)b);
      } else {
        t = 0;
      }
1813
      q.dp[ix] = t;
1814
  }
1815

1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842
  if (d != NULL) {
     *d = (mp_digit)w;
  }
  
  if (c != NULL) {
     mp_clamp(&q);
     mp_exch(&q, c);
  }
  mp_clear(&q);
  
  return res;
}

/* reduce "x" in place modulo "n" using the Diminished Radix algorithm.
 *
 * Based on algorithm from the paper
 *
 * "Generating Efficient Primes for Discrete Log Cryptosystems"
 *                 Chae Hoon Lim, Pil Loong Lee,
 *          POSTECH Information Research Laboratories
 *
 * The modulus must be of a special format [see manual]
 *
 * Has been modified to use algorithm 7.10 from the LTM book instead
 *
 * Input x must be in the range 0 <= x <= (n-1)**2
 */
1843
static int
1844
mp_dr_reduce (mp_int * x, const mp_int * n, mp_digit k)
1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901
{
  int      err, i, m;
  mp_word  r;
  mp_digit mu, *tmpx1, *tmpx2;

  /* m = digits in modulus */
  m = n->used;

  /* ensure that "x" has at least 2m digits */
  if (x->alloc < m + m) {
    if ((err = mp_grow (x, m + m)) != MP_OKAY) {
      return err;
    }
  }

/* top of loop, this is where the code resumes if
 * another reduction pass is required.
 */
top:
  /* aliases for digits */
  /* alias for lower half of x */
  tmpx1 = x->dp;

  /* alias for upper half of x, or x/B**m */
  tmpx2 = x->dp + m;

  /* set carry to zero */
  mu = 0;

  /* compute (x mod B**m) + k * [x/B**m] inline and inplace */
  for (i = 0; i < m; i++) {
      r         = ((mp_word)*tmpx2++) * ((mp_word)k) + *tmpx1 + mu;
      *tmpx1++  = (mp_digit)(r & MP_MASK);
      mu        = (mp_digit)(r >> ((mp_word)DIGIT_BIT));
  }

  /* set final carry */
  *tmpx1++ = mu;

  /* zero words above m */
  for (i = m + 1; i < x->used; i++) {
      *tmpx1++ = 0;
  }

  /* clamp, sub and return */
  mp_clamp (x);

  /* if x >= n then subtract and reduce again
   * Each successive "recursion" makes the input smaller and smaller.
   */
  if (mp_cmp_mag (x, n) != MP_LT) {
    s_mp_sub(x, n, x);
    goto top;
  }
  return MP_OKAY;
}

1902 1903
/* sets the value of "d" required for mp_dr_reduce */
static void mp_dr_setup(const mp_int *a, mp_digit *d)
1904 1905 1906 1907 1908 1909 1910 1911 1912 1913
{
   /* the casts are required if DIGIT_BIT is one less than
    * the number of bits in a mp_digit [e.g. DIGIT_BIT==31]
    */
   *d = (mp_digit)((((mp_word)1) << ((mp_word)DIGIT_BIT)) - 
        ((mp_word)a->dp[0]));
}

/* this is a shell function that calls either the normal or Montgomery
 * exptmod functions.  Originally the call to the montgomery code was
1914
 * embedded in the normal function but that wasted a lot of stack space
1915 1916
 * for nothing (since 99% of the time the Montgomery code would be called)
 */
1917
int mp_exptmod (const mp_int * G, const mp_int * X, mp_int * P, mp_int * Y)
1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975
{
  int dr;

  /* modulus P must be positive */
  if (P->sign == MP_NEG) {
     return MP_VAL;
  }

  /* if exponent X is negative we have to recurse */
  if (X->sign == MP_NEG) {
     mp_int tmpG, tmpX;
     int err;

     /* first compute 1/G mod P */
     if ((err = mp_init(&tmpG)) != MP_OKAY) {
        return err;
     }
     if ((err = mp_invmod(G, P, &tmpG)) != MP_OKAY) {
        mp_clear(&tmpG);
        return err;
     }

     /* now get |X| */
     if ((err = mp_init(&tmpX)) != MP_OKAY) {
        mp_clear(&tmpG);
        return err;
     }
     if ((err = mp_abs(X, &tmpX)) != MP_OKAY) {
        mp_clear_multi(&tmpG, &tmpX, NULL);
        return err;
     }

     /* and now compute (1/G)**|X| instead of G**X [X < 0] */
     err = mp_exptmod(&tmpG, &tmpX, P, Y);
     mp_clear_multi(&tmpG, &tmpX, NULL);
     return err;
  }

  dr = 0;

  /* if the modulus is odd or dr != 0 use the fast method */
  if (mp_isodd (P) == 1 || dr !=  0) {
    return mp_exptmod_fast (G, X, P, Y, dr);
  } else {
    /* otherwise use the generic Barrett reduction technique */
    return s_mp_exptmod (G, X, P, Y);
  }
}

/* computes Y == G**X mod P, HAC pp.616, Algorithm 14.85
 *
 * Uses a left-to-right k-ary sliding window to compute the modular exponentiation.
 * The value of k changes based on the size of the exponent.
 *
 * Uses Montgomery or Diminished Radix reduction [whichever appropriate]
 */

int
1976
mp_exptmod_fast (const mp_int * G, const mp_int * X, mp_int * P, mp_int * Y, int redmode)
1977 1978 1979 1980 1981 1982 1983 1984 1985
{
  mp_int  M[256], res;
  mp_digit buf, mp;
  int     err, bitbuf, bitcpy, bitcnt, mode, digidx, x, y, winsize;

  /* use a pointer to the reduction algorithm.  This allows us to use
   * one of many reduction algorithms without modding the guts of
   * the code with if statements everywhere.
   */
1986
  int     (*redux)(mp_int*,const mp_int*,mp_digit);
1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119

  /* find window size */
  x = mp_count_bits (X);
  if (x <= 7) {
    winsize = 2;
  } else if (x <= 36) {
    winsize = 3;
  } else if (x <= 140) {
    winsize = 4;
  } else if (x <= 450) {
    winsize = 5;
  } else if (x <= 1303) {
    winsize = 6;
  } else if (x <= 3529) {
    winsize = 7;
  } else {
    winsize = 8;
  }

  /* init M array */
  /* init first cell */
  if ((err = mp_init(&M[1])) != MP_OKAY) {
     return err;
  }

  /* now init the second half of the array */
  for (x = 1<<(winsize-1); x < (1 << winsize); x++) {
    if ((err = mp_init(&M[x])) != MP_OKAY) {
      for (y = 1<<(winsize-1); y < x; y++) {
        mp_clear (&M[y]);
      }
      mp_clear(&M[1]);
      return err;
    }
  }

  /* determine and setup reduction code */
  if (redmode == 0) {
     /* now setup montgomery  */
     if ((err = mp_montgomery_setup (P, &mp)) != MP_OKAY) {
        goto __M;
     }

     /* automatically pick the comba one if available (saves quite a few calls/ifs) */
     if (((P->used * 2 + 1) < MP_WARRAY) &&
          P->used < (1 << ((CHAR_BIT * sizeof (mp_word)) - (2 * DIGIT_BIT)))) {
        redux = fast_mp_montgomery_reduce;
     } else {
        /* use slower baseline Montgomery method */
        redux = mp_montgomery_reduce;
     }
  } else if (redmode == 1) {
     /* setup DR reduction for moduli of the form B**k - b */
     mp_dr_setup(P, &mp);
     redux = mp_dr_reduce;
  } else {
     /* setup DR reduction for moduli of the form 2**k - b */
     if ((err = mp_reduce_2k_setup(P, &mp)) != MP_OKAY) {
        goto __M;
     }
     redux = mp_reduce_2k;
  }

  /* setup result */
  if ((err = mp_init (&res)) != MP_OKAY) {
    goto __M;
  }

  /* create M table
   *

   *
   * The first half of the table is not computed though accept for M[0] and M[1]
   */

  if (redmode == 0) {
     /* now we need R mod m */
     if ((err = mp_montgomery_calc_normalization (&res, P)) != MP_OKAY) {
       goto __RES;
     }

     /* now set M[1] to G * R mod m */
     if ((err = mp_mulmod (G, &res, P, &M[1])) != MP_OKAY) {
       goto __RES;
     }
  } else {
     mp_set(&res, 1);
     if ((err = mp_mod(G, P, &M[1])) != MP_OKAY) {
        goto __RES;
     }
  }

  /* compute the value at M[1<<(winsize-1)] by squaring M[1] (winsize-1) times */
  if ((err = mp_copy (&M[1], &M[1 << (winsize - 1)])) != MP_OKAY) {
    goto __RES;
  }

  for (x = 0; x < (winsize - 1); x++) {
    if ((err = mp_sqr (&M[1 << (winsize - 1)], &M[1 << (winsize - 1)])) != MP_OKAY) {
      goto __RES;
    }
    if ((err = redux (&M[1 << (winsize - 1)], P, mp)) != MP_OKAY) {
      goto __RES;
    }
  }

  /* create upper table */
  for (x = (1 << (winsize - 1)) + 1; x < (1 << winsize); x++) {
    if ((err = mp_mul (&M[x - 1], &M[1], &M[x])) != MP_OKAY) {
      goto __RES;
    }
    if ((err = redux (&M[x], P, mp)) != MP_OKAY) {
      goto __RES;
    }
  }

  /* set initial mode and bit cnt */
  mode   = 0;
  bitcnt = 1;
  buf    = 0;
  digidx = X->used - 1;
  bitcpy = 0;
  bitbuf = 0;

  for (;;) {
    /* grab next digit as required */
    if (--bitcnt == 0) {
      /* if digidx == -1 we are out of digits so break */
      if (digidx == -1) {
        break;
      }
      /* read next digit and reset bitcnt */
      buf    = X->dp[digidx--];
2120
      bitcnt = DIGIT_BIT;
2121 2122 2123
    }

    /* grab the next msb from the exponent */
2124
    y     = (buf >> (DIGIT_BIT - 1)) & 1;
2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227
    buf <<= (mp_digit)1;

    /* if the bit is zero and mode == 0 then we ignore it
     * These represent the leading zero bits before the first 1 bit
     * in the exponent.  Technically this opt is not required but it
     * does lower the # of trivial squaring/reductions used
     */
    if (mode == 0 && y == 0) {
      continue;
    }

    /* if the bit is zero and mode == 1 then we square */
    if (mode == 1 && y == 0) {
      if ((err = mp_sqr (&res, &res)) != MP_OKAY) {
        goto __RES;
      }
      if ((err = redux (&res, P, mp)) != MP_OKAY) {
        goto __RES;
      }
      continue;
    }

    /* else we add it to the window */
    bitbuf |= (y << (winsize - ++bitcpy));
    mode    = 2;

    if (bitcpy == winsize) {
      /* ok window is filled so square as required and multiply  */
      /* square first */
      for (x = 0; x < winsize; x++) {
        if ((err = mp_sqr (&res, &res)) != MP_OKAY) {
          goto __RES;
        }
        if ((err = redux (&res, P, mp)) != MP_OKAY) {
          goto __RES;
        }
      }

      /* then multiply */
      if ((err = mp_mul (&res, &M[bitbuf], &res)) != MP_OKAY) {
        goto __RES;
      }
      if ((err = redux (&res, P, mp)) != MP_OKAY) {
        goto __RES;
      }

      /* empty window and reset */
      bitcpy = 0;
      bitbuf = 0;
      mode   = 1;
    }
  }

  /* if bits remain then square/multiply */
  if (mode == 2 && bitcpy > 0) {
    /* square then multiply if the bit is set */
    for (x = 0; x < bitcpy; x++) {
      if ((err = mp_sqr (&res, &res)) != MP_OKAY) {
        goto __RES;
      }
      if ((err = redux (&res, P, mp)) != MP_OKAY) {
        goto __RES;
      }

      /* get next bit of the window */
      bitbuf <<= 1;
      if ((bitbuf & (1 << winsize)) != 0) {
        /* then multiply */
        if ((err = mp_mul (&res, &M[1], &res)) != MP_OKAY) {
          goto __RES;
        }
        if ((err = redux (&res, P, mp)) != MP_OKAY) {
          goto __RES;
        }
      }
    }
  }

  if (redmode == 0) {
     /* fixup result if Montgomery reduction is used
      * recall that any value in a Montgomery system is
      * actually multiplied by R mod n.  So we have
      * to reduce one more time to cancel out the factor
      * of R.
      */
     if ((err = redux(&res, P, mp)) != MP_OKAY) {
       goto __RES;
     }
  }

  /* swap res with Y */
  mp_exch (&res, Y);
  err = MP_OKAY;
__RES:mp_clear (&res);
__M:
  mp_clear(&M[1]);
  for (x = 1<<(winsize-1); x < (1 << winsize); x++) {
    mp_clear (&M[x]);
  }
  return err;
}

/* Greatest Common Divisor using the binary method */
2228
int mp_gcd (const mp_int * a, const mp_int * b, mp_int * c)
2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319
{
  mp_int  u, v;
  int     k, u_lsb, v_lsb, res;

  /* either zero than gcd is the largest */
  if (mp_iszero (a) == 1 && mp_iszero (b) == 0) {
    return mp_abs (b, c);
  }
  if (mp_iszero (a) == 0 && mp_iszero (b) == 1) {
    return mp_abs (a, c);
  }

  /* optimized.  At this point if a == 0 then
   * b must equal zero too
   */
  if (mp_iszero (a) == 1) {
    mp_zero(c);
    return MP_OKAY;
  }

  /* get copies of a and b we can modify */
  if ((res = mp_init_copy (&u, a)) != MP_OKAY) {
    return res;
  }

  if ((res = mp_init_copy (&v, b)) != MP_OKAY) {
    goto __U;
  }

  /* must be positive for the remainder of the algorithm */
  u.sign = v.sign = MP_ZPOS;

  /* B1.  Find the common power of two for u and v */
  u_lsb = mp_cnt_lsb(&u);
  v_lsb = mp_cnt_lsb(&v);
  k     = MIN(u_lsb, v_lsb);

  if (k > 0) {
     /* divide the power of two out */
     if ((res = mp_div_2d(&u, k, &u, NULL)) != MP_OKAY) {
        goto __V;
     }

     if ((res = mp_div_2d(&v, k, &v, NULL)) != MP_OKAY) {
        goto __V;
     }
  }

  /* divide any remaining factors of two out */
  if (u_lsb != k) {
     if ((res = mp_div_2d(&u, u_lsb - k, &u, NULL)) != MP_OKAY) {
        goto __V;
     }
  }

  if (v_lsb != k) {
     if ((res = mp_div_2d(&v, v_lsb - k, &v, NULL)) != MP_OKAY) {
        goto __V;
     }
  }

  while (mp_iszero(&v) == 0) {
     /* make sure v is the largest */
     if (mp_cmp_mag(&u, &v) == MP_GT) {
        /* swap u and v to make sure v is >= u */
        mp_exch(&u, &v);
     }
     
     /* subtract smallest from largest */
     if ((res = s_mp_sub(&v, &u, &v)) != MP_OKAY) {
        goto __V;
     }
     
     /* Divide out all factors of two */
     if ((res = mp_div_2d(&v, mp_cnt_lsb(&v), &v, NULL)) != MP_OKAY) {
        goto __V;
     } 
  } 

  /* multiply by 2**k which we divided out at the beginning */
  if ((res = mp_mul_2d (&u, k, c)) != MP_OKAY) {
     goto __V;
  }
  c->sign = MP_ZPOS;
  res = MP_OKAY;
__V:mp_clear (&u);
__U:mp_clear (&v);
  return res;
}

/* get the lower 32-bits of an mp_int */
2320
unsigned long mp_get_int(const mp_int * a)
2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390
{
  int i;
  unsigned long res;

  if (a->used == 0) {
     return 0;
  }

  /* get number of digits of the lsb we have to read */
  i = MIN(a->used,(int)((sizeof(unsigned long)*CHAR_BIT+DIGIT_BIT-1)/DIGIT_BIT))-1;

  /* get most significant digit of result */
  res = DIGIT(a,i);
   
  while (--i >= 0) {
    res = (res << DIGIT_BIT) | DIGIT(a,i);
  }

  /* force result to 32-bits always so it is consistent on non 32-bit platforms */
  return res & 0xFFFFFFFFUL;
}

/* creates "a" then copies b into it */
int mp_init_copy (mp_int * a, const mp_int * b)
{
  int     res;

  if ((res = mp_init (a)) != MP_OKAY) {
    return res;
  }
  return mp_copy (b, a);
}

int mp_init_multi(mp_int *mp, ...) 
{
    mp_err res = MP_OKAY;      /* Assume ok until proven otherwise */
    int n = 0;                 /* Number of ok inits */
    mp_int* cur_arg = mp;
    va_list args;

    va_start(args, mp);        /* init args to next argument from caller */
    while (cur_arg != NULL) {
        if (mp_init(cur_arg) != MP_OKAY) {
            /* Oops - error! Back-track and mp_clear what we already
               succeeded in init-ing, then return error.
            */
            va_list clean_args;
            
            /* end the current list */
            va_end(args);
            
            /* now start cleaning up */            
            cur_arg = mp;
            va_start(clean_args, mp);
            while (n--) {
                mp_clear(cur_arg);
                cur_arg = va_arg(clean_args, mp_int*);
            }
            va_end(clean_args);
            res = MP_MEM;
            break;
        }
        n++;
        cur_arg = va_arg(args, mp_int*);
    }
    va_end(args);
    return res;                /* Assumed ok, if error flagged above. */
}

/* hac 14.61, pp608 */
2391
int mp_invmod (const mp_int * a, mp_int * b, mp_int * c)
2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406
{
  /* b cannot be negative */
  if (b->sign == MP_NEG || mp_iszero(b) == 1) {
    return MP_VAL;
  }

  /* if the modulus is odd we can use a faster routine instead */
  if (mp_isodd (b) == 1) {
    return fast_mp_invmod (a, b, c);
  }
  
  return mp_invmod_slow(a, b, c);
}

/* hac 14.61, pp608 */
2407
int mp_invmod_slow (const mp_int * a, mp_int * b, mp_int * c)
2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583
{
  mp_int  x, y, u, v, A, B, C, D;
  int     res;

  /* b cannot be negative */
  if (b->sign == MP_NEG || mp_iszero(b) == 1) {
    return MP_VAL;
  }

  /* init temps */
  if ((res = mp_init_multi(&x, &y, &u, &v, 
                           &A, &B, &C, &D, NULL)) != MP_OKAY) {
     return res;
  }

  /* x = a, y = b */
  if ((res = mp_copy (a, &x)) != MP_OKAY) {
    goto __ERR;
  }
  if ((res = mp_copy (b, &y)) != MP_OKAY) {
    goto __ERR;
  }

  /* 2. [modified] if x,y are both even then return an error! */
  if (mp_iseven (&x) == 1 && mp_iseven (&y) == 1) {
    res = MP_VAL;
    goto __ERR;
  }

  /* 3. u=x, v=y, A=1, B=0, C=0,D=1 */
  if ((res = mp_copy (&x, &u)) != MP_OKAY) {
    goto __ERR;
  }
  if ((res = mp_copy (&y, &v)) != MP_OKAY) {
    goto __ERR;
  }
  mp_set (&A, 1);
  mp_set (&D, 1);

top:
  /* 4.  while u is even do */
  while (mp_iseven (&u) == 1) {
    /* 4.1 u = u/2 */
    if ((res = mp_div_2 (&u, &u)) != MP_OKAY) {
      goto __ERR;
    }
    /* 4.2 if A or B is odd then */
    if (mp_isodd (&A) == 1 || mp_isodd (&B) == 1) {
      /* A = (A+y)/2, B = (B-x)/2 */
      if ((res = mp_add (&A, &y, &A)) != MP_OKAY) {
         goto __ERR;
      }
      if ((res = mp_sub (&B, &x, &B)) != MP_OKAY) {
         goto __ERR;
      }
    }
    /* A = A/2, B = B/2 */
    if ((res = mp_div_2 (&A, &A)) != MP_OKAY) {
      goto __ERR;
    }
    if ((res = mp_div_2 (&B, &B)) != MP_OKAY) {
      goto __ERR;
    }
  }

  /* 5.  while v is even do */
  while (mp_iseven (&v) == 1) {
    /* 5.1 v = v/2 */
    if ((res = mp_div_2 (&v, &v)) != MP_OKAY) {
      goto __ERR;
    }
    /* 5.2 if C or D is odd then */
    if (mp_isodd (&C) == 1 || mp_isodd (&D) == 1) {
      /* C = (C+y)/2, D = (D-x)/2 */
      if ((res = mp_add (&C, &y, &C)) != MP_OKAY) {
         goto __ERR;
      }
      if ((res = mp_sub (&D, &x, &D)) != MP_OKAY) {
         goto __ERR;
      }
    }
    /* C = C/2, D = D/2 */
    if ((res = mp_div_2 (&C, &C)) != MP_OKAY) {
      goto __ERR;
    }
    if ((res = mp_div_2 (&D, &D)) != MP_OKAY) {
      goto __ERR;
    }
  }

  /* 6.  if u >= v then */
  if (mp_cmp (&u, &v) != MP_LT) {
    /* u = u - v, A = A - C, B = B - D */
    if ((res = mp_sub (&u, &v, &u)) != MP_OKAY) {
      goto __ERR;
    }

    if ((res = mp_sub (&A, &C, &A)) != MP_OKAY) {
      goto __ERR;
    }

    if ((res = mp_sub (&B, &D, &B)) != MP_OKAY) {
      goto __ERR;
    }
  } else {
    /* v - v - u, C = C - A, D = D - B */
    if ((res = mp_sub (&v, &u, &v)) != MP_OKAY) {
      goto __ERR;
    }

    if ((res = mp_sub (&C, &A, &C)) != MP_OKAY) {
      goto __ERR;
    }

    if ((res = mp_sub (&D, &B, &D)) != MP_OKAY) {
      goto __ERR;
    }
  }

  /* if not zero goto step 4 */
  if (mp_iszero (&u) == 0)
    goto top;

  /* now a = C, b = D, gcd == g*v */

  /* if v != 1 then there is no inverse */
  if (mp_cmp_d (&v, 1) != MP_EQ) {
    res = MP_VAL;
    goto __ERR;
  }

  /* if its too low */
  while (mp_cmp_d(&C, 0) == MP_LT) {
      if ((res = mp_add(&C, b, &C)) != MP_OKAY) {
         goto __ERR;
      }
  }
  
  /* too big */
  while (mp_cmp_mag(&C, b) != MP_LT) {
      if ((res = mp_sub(&C, b, &C)) != MP_OKAY) {
         goto __ERR;
      }
  }
  
  /* C is now the inverse */
  mp_exch (&C, c);
  res = MP_OKAY;
__ERR:mp_clear_multi (&x, &y, &u, &v, &A, &B, &C, &D, NULL);
  return res;
}

/* c = |a| * |b| using Karatsuba Multiplication using 
 * three half size multiplications
 *
 * Let B represent the radix [e.g. 2**DIGIT_BIT] and 
 * let n represent half of the number of digits in 
 * the min(a,b)
 *
 * a = a1 * B**n + a0
 * b = b1 * B**n + b0
 *
 * Then, a * b => 
   a1b1 * B**2n + ((a1 - a0)(b1 - b0) + a0b0 + a1b1) * B + a0b0
 *
 * Note that a1b1 and a0b0 are used twice and only need to be 
 * computed once.  So in total three half size (half # of 
 * digit) multiplications are performed, a0b0, a1b1 and 
 * (a1-b1)(a0-b0)
 *
 * Note that a multiplication of half the digits requires
 * 1/4th the number of single precision multiplications so in 
 * total after one call 25% of the single precision multiplications 
 * are saved.  Note also that the call to mp_mul can end up back 
 * in this function if the a0, a1, b0, or b1 are above the threshold.  
 * This is known as divide-and-conquer and leads to the famous 
Austin English's avatar
Austin English committed
2584
 * O(N**lg(3)) or O(N**1.584) work which is asymptotically lower than
2585 2586 2587 2588
 * the standard O(N**2) that the baseline/comba methods use.  
 * Generally though the overhead of this method doesn't pay off 
 * until a certain size (N ~ 80) is reached.
 */
2589
int mp_karatsuba_mul (const mp_int * a, const mp_int * b, mp_int * c)
2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712
{
  mp_int  x0, x1, y0, y1, t1, x0y0, x1y1;
  int     B, err;

  /* default the return code to an error */
  err = MP_MEM;

  /* min # of digits */
  B = MIN (a->used, b->used);

  /* now divide in two */
  B = B >> 1;

  /* init copy all the temps */
  if (mp_init_size (&x0, B) != MP_OKAY)
    goto ERR;
  if (mp_init_size (&x1, a->used - B) != MP_OKAY)
    goto X0;
  if (mp_init_size (&y0, B) != MP_OKAY)
    goto X1;
  if (mp_init_size (&y1, b->used - B) != MP_OKAY)
    goto Y0;

  /* init temps */
  if (mp_init_size (&t1, B * 2) != MP_OKAY)
    goto Y1;
  if (mp_init_size (&x0y0, B * 2) != MP_OKAY)
    goto T1;
  if (mp_init_size (&x1y1, B * 2) != MP_OKAY)
    goto X0Y0;

  /* now shift the digits */
  x0.used = y0.used = B;
  x1.used = a->used - B;
  y1.used = b->used - B;

  {
    register int x;
    register mp_digit *tmpa, *tmpb, *tmpx, *tmpy;

    /* we copy the digits directly instead of using higher level functions
     * since we also need to shift the digits
     */
    tmpa = a->dp;
    tmpb = b->dp;

    tmpx = x0.dp;
    tmpy = y0.dp;
    for (x = 0; x < B; x++) {
      *tmpx++ = *tmpa++;
      *tmpy++ = *tmpb++;
    }

    tmpx = x1.dp;
    for (x = B; x < a->used; x++) {
      *tmpx++ = *tmpa++;
    }

    tmpy = y1.dp;
    for (x = B; x < b->used; x++) {
      *tmpy++ = *tmpb++;
    }
  }

  /* only need to clamp the lower words since by definition the 
   * upper words x1/y1 must have a known number of digits
   */
  mp_clamp (&x0);
  mp_clamp (&y0);

  /* now calc the products x0y0 and x1y1 */
  /* after this x0 is no longer required, free temp [x0==t2]! */
  if (mp_mul (&x0, &y0, &x0y0) != MP_OKAY)  
    goto X1Y1;          /* x0y0 = x0*y0 */
  if (mp_mul (&x1, &y1, &x1y1) != MP_OKAY)
    goto X1Y1;          /* x1y1 = x1*y1 */

  /* now calc x1-x0 and y1-y0 */
  if (mp_sub (&x1, &x0, &t1) != MP_OKAY)
    goto X1Y1;          /* t1 = x1 - x0 */
  if (mp_sub (&y1, &y0, &x0) != MP_OKAY)
    goto X1Y1;          /* t2 = y1 - y0 */
  if (mp_mul (&t1, &x0, &t1) != MP_OKAY)
    goto X1Y1;          /* t1 = (x1 - x0) * (y1 - y0) */

  /* add x0y0 */
  if (mp_add (&x0y0, &x1y1, &x0) != MP_OKAY)
    goto X1Y1;          /* t2 = x0y0 + x1y1 */
  if (mp_sub (&x0, &t1, &t1) != MP_OKAY)
    goto X1Y1;          /* t1 = x0y0 + x1y1 - (x1-x0)*(y1-y0) */

  /* shift by B */
  if (mp_lshd (&t1, B) != MP_OKAY)
    goto X1Y1;          /* t1 = (x0y0 + x1y1 - (x1-x0)*(y1-y0))<<B */
  if (mp_lshd (&x1y1, B * 2) != MP_OKAY)
    goto X1Y1;          /* x1y1 = x1y1 << 2*B */

  if (mp_add (&x0y0, &t1, &t1) != MP_OKAY)
    goto X1Y1;          /* t1 = x0y0 + t1 */
  if (mp_add (&t1, &x1y1, c) != MP_OKAY)
    goto X1Y1;          /* t1 = x0y0 + t1 + x1y1 */

  /* Algorithm succeeded set the return code to MP_OKAY */
  err = MP_OKAY;

X1Y1:mp_clear (&x1y1);
X0Y0:mp_clear (&x0y0);
T1:mp_clear (&t1);
Y1:mp_clear (&y1);
Y0:mp_clear (&y0);
X1:mp_clear (&x1);
X0:mp_clear (&x0);
ERR:
  return err;
}

/* Karatsuba squaring, computes b = a*a using three 
 * half size squarings
 *
 * See comments of karatsuba_mul for details.  It 
 * is essentially the same algorithm but merely 
 * tuned to perform recursive squarings.
 */
2713
int mp_karatsuba_sqr (const mp_int * a, mp_int * b)
2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806
{
  mp_int  x0, x1, t1, t2, x0x0, x1x1;
  int     B, err;

  err = MP_MEM;

  /* min # of digits */
  B = a->used;

  /* now divide in two */
  B = B >> 1;

  /* init copy all the temps */
  if (mp_init_size (&x0, B) != MP_OKAY)
    goto ERR;
  if (mp_init_size (&x1, a->used - B) != MP_OKAY)
    goto X0;

  /* init temps */
  if (mp_init_size (&t1, a->used * 2) != MP_OKAY)
    goto X1;
  if (mp_init_size (&t2, a->used * 2) != MP_OKAY)
    goto T1;
  if (mp_init_size (&x0x0, B * 2) != MP_OKAY)
    goto T2;
  if (mp_init_size (&x1x1, (a->used - B) * 2) != MP_OKAY)
    goto X0X0;

  {
    register int x;
    register mp_digit *dst, *src;

    src = a->dp;

    /* now shift the digits */
    dst = x0.dp;
    for (x = 0; x < B; x++) {
      *dst++ = *src++;
    }

    dst = x1.dp;
    for (x = B; x < a->used; x++) {
      *dst++ = *src++;
    }
  }

  x0.used = B;
  x1.used = a->used - B;

  mp_clamp (&x0);

  /* now calc the products x0*x0 and x1*x1 */
  if (mp_sqr (&x0, &x0x0) != MP_OKAY)
    goto X1X1;           /* x0x0 = x0*x0 */
  if (mp_sqr (&x1, &x1x1) != MP_OKAY)
    goto X1X1;           /* x1x1 = x1*x1 */

  /* now calc (x1-x0)**2 */
  if (mp_sub (&x1, &x0, &t1) != MP_OKAY)
    goto X1X1;           /* t1 = x1 - x0 */
  if (mp_sqr (&t1, &t1) != MP_OKAY)
    goto X1X1;           /* t1 = (x1 - x0) * (x1 - x0) */

  /* add x0y0 */
  if (s_mp_add (&x0x0, &x1x1, &t2) != MP_OKAY)
    goto X1X1;           /* t2 = x0x0 + x1x1 */
  if (mp_sub (&t2, &t1, &t1) != MP_OKAY)
    goto X1X1;           /* t1 = x0x0 + x1x1 - (x1-x0)*(x1-x0) */

  /* shift by B */
  if (mp_lshd (&t1, B) != MP_OKAY)
    goto X1X1;           /* t1 = (x0x0 + x1x1 - (x1-x0)*(x1-x0))<<B */
  if (mp_lshd (&x1x1, B * 2) != MP_OKAY)
    goto X1X1;           /* x1x1 = x1x1 << 2*B */

  if (mp_add (&x0x0, &t1, &t1) != MP_OKAY)
    goto X1X1;           /* t1 = x0x0 + t1 */
  if (mp_add (&t1, &x1x1, b) != MP_OKAY)
    goto X1X1;           /* t1 = x0x0 + t1 + x1x1 */

  err = MP_OKAY;

X1X1:mp_clear (&x1x1);
X0X0:mp_clear (&x0x0);
T2:mp_clear (&t2);
T1:mp_clear (&t1);
X1:mp_clear (&x1);
X0:mp_clear (&x0);
ERR:
  return err;
}

/* computes least common multiple as |a*b|/(a, b) */
2807
int mp_lcm (const mp_int * a, const mp_int * b, mp_int * c)
2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846
{
  int     res;
  mp_int  t1, t2;


  if ((res = mp_init_multi (&t1, &t2, NULL)) != MP_OKAY) {
    return res;
  }

  /* t1 = get the GCD of the two inputs */
  if ((res = mp_gcd (a, b, &t1)) != MP_OKAY) {
    goto __T;
  }

  /* divide the smallest by the GCD */
  if (mp_cmp_mag(a, b) == MP_LT) {
     /* store quotient in t2 such that t2 * b is the LCM */
     if ((res = mp_div(a, &t1, &t2, NULL)) != MP_OKAY) {
        goto __T;
     }
     res = mp_mul(b, &t2, c);
  } else {
     /* store quotient in t2 such that t2 * a is the LCM */
     if ((res = mp_div(b, &t1, &t2, NULL)) != MP_OKAY) {
        goto __T;
     }
     res = mp_mul(a, &t2, c);
  }

  /* fix the sign to positive */
  c->sign = MP_ZPOS;

__T:
  mp_clear_multi (&t1, &t2, NULL);
  return res;
}

/* c = a mod b, 0 <= c < b */
int
2847
mp_mod (const mp_int * a, mp_int * b, mp_int * c)
2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871
{
  mp_int  t;
  int     res;

  if ((res = mp_init (&t)) != MP_OKAY) {
    return res;
  }

  if ((res = mp_div (a, b, NULL, &t)) != MP_OKAY) {
    mp_clear (&t);
    return res;
  }

  if (t.sign != b->sign) {
    res = mp_add (b, &t, c);
  } else {
    res = MP_OKAY;
    mp_exch (&t, c);
  }

  mp_clear (&t);
  return res;
}

2872 2873
static int
mp_mod_d (const mp_int * a, mp_digit b, mp_digit * c)
2874
{
2875 2876
  return mp_div_d(a, b, NULL, c);
}
2877

2878 2879 2880 2881
/* b = a*2 */
static int mp_mul_2(const mp_int * a, mp_int * b)
{
  int     x, res, oldused;
2882

2883 2884 2885 2886 2887
  /* grow to accommodate result */
  if (b->alloc < a->used + 1) {
    if ((res = mp_grow (b, a->used + 1)) != MP_OKAY) {
      return res;
    }
2888 2889
  }

2890 2891
  oldused = b->used;
  b->used = a->used;
2892

2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933
  {
    register mp_digit r, rr, *tmpa, *tmpb;

    /* alias for source */
    tmpa = a->dp;

    /* alias for dest */
    tmpb = b->dp;

    /* carry */
    r = 0;
    for (x = 0; x < a->used; x++) {

      /* get what will be the *next* carry bit from the
       * MSB of the current digit
       */
      rr = *tmpa >> ((mp_digit)(DIGIT_BIT - 1));

      /* now shift up this digit, add in the carry [from the previous] */
      *tmpb++ = ((*tmpa++ << ((mp_digit)1)) | r) & MP_MASK;

      /* copy the carry that would be from the source
       * digit into the next iteration
       */
      r = rr;
    }

    /* new leading digit? */
    if (r != 0) {
      /* add a MSB which is always 1 at this point */
      *tmpb = 1;
      ++(b->used);
    }

    /* now zero any excess digits on the destination
     * that we didn't write to
     */
    tmpb = b->dp + b->used;
    for (x = b->used; x < oldused; x++) {
      *tmpb++ = 0;
    }
2934
  }
2935
  b->sign = a->sign;
2936 2937 2938 2939 2940 2941
  return MP_OKAY;
}

/*
 * shifts with subtractions when the result is greater than b.
 *
2942
 * The method is slightly modified to shift B unconditionally up to just under
2943
 * the leading bit of b.  This saves a lot of multiple precision shifting.
2944
 */
2945
int mp_montgomery_calc_normalization (mp_int * a, const mp_int * b)
2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963
{
  int     x, bits, res;

  /* how many bits of last digit does b use */
  bits = mp_count_bits (b) % DIGIT_BIT;


  if (b->used > 1) {
     if ((res = mp_2expt (a, (b->used - 1) * DIGIT_BIT + bits - 1)) != MP_OKAY) {
        return res;
     }
  } else {
     mp_set(a, 1);
     bits = 1;
  }


  /* now compute C = A * B mod b */
2964
  for (x = bits - 1; x < DIGIT_BIT; x++) {
2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979
    if ((res = mp_mul_2 (a, a)) != MP_OKAY) {
      return res;
    }
    if (mp_cmp_mag (a, b) != MP_LT) {
      if ((res = s_mp_sub (a, b, a)) != MP_OKAY) {
        return res;
      }
    }
  }

  return MP_OKAY;
}

/* computes xR**-1 == x (mod N) via Montgomery Reduction */
int
2980
mp_montgomery_reduce (mp_int * x, const mp_int * n, mp_digit rho)
2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076
{
  int     ix, res, digs;
  mp_digit mu;

  /* can the fast reduction [comba] method be used?
   *
   * Note that unlike in mul you're safely allowed *less*
   * than the available columns [255 per default] since carries
   * are fixed up in the inner loop.
   */
  digs = n->used * 2 + 1;
  if ((digs < MP_WARRAY) &&
      n->used <
      (1 << ((CHAR_BIT * sizeof (mp_word)) - (2 * DIGIT_BIT)))) {
    return fast_mp_montgomery_reduce (x, n, rho);
  }

  /* grow the input as required */
  if (x->alloc < digs) {
    if ((res = mp_grow (x, digs)) != MP_OKAY) {
      return res;
    }
  }
  x->used = digs;

  for (ix = 0; ix < n->used; ix++) {
    /* mu = ai * rho mod b
     *
     * The value of rho must be precalculated via
     * montgomery_setup() such that
     * it equals -1/n0 mod b this allows the
     * following inner loop to reduce the
     * input one digit at a time
     */
    mu = (mp_digit) (((mp_word)x->dp[ix]) * ((mp_word)rho) & MP_MASK);

    /* a = a + mu * m * b**i */
    {
      register int iy;
      register mp_digit *tmpn, *tmpx, u;
      register mp_word r;

      /* alias for digits of the modulus */
      tmpn = n->dp;

      /* alias for the digits of x [the input] */
      tmpx = x->dp + ix;

      /* set the carry to zero */
      u = 0;

      /* Multiply and add in place */
      for (iy = 0; iy < n->used; iy++) {
        /* compute product and sum */
        r       = ((mp_word)mu) * ((mp_word)*tmpn++) +
                  ((mp_word) u) + ((mp_word) * tmpx);

        /* get carry */
        u       = (mp_digit)(r >> ((mp_word) DIGIT_BIT));

        /* fix digit */
        *tmpx++ = (mp_digit)(r & ((mp_word) MP_MASK));
      }
      /* At this point the ix'th digit of x should be zero */


      /* propagate carries upwards as required*/
      while (u) {
        *tmpx   += u;
        u        = *tmpx >> DIGIT_BIT;
        *tmpx++ &= MP_MASK;
      }
    }
  }

  /* at this point the n.used'th least
   * significant digits of x are all zero
   * which means we can shift x to the
   * right by n.used digits and the
   * residue is unchanged.
   */

  /* x = x/b**n.used */
  mp_clamp(x);
  mp_rshd (x, n->used);

  /* if x >= n then x = x - n */
  if (mp_cmp_mag (x, n) != MP_LT) {
    return s_mp_sub (x, n, x);
  }

  return MP_OKAY;
}

/* setups the montgomery reduction stuff */
int
3077
mp_montgomery_setup (const mp_int * n, mp_digit * rho)
3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106
{
  mp_digit x, b;

/* fast inversion mod 2**k
 *
 * Based on the fact that
 *
 * XA = 1 (mod 2**n)  =>  (X(2-XA)) A = 1 (mod 2**2n)
 *                    =>  2*X*A - X*X*A*A = 1
 *                    =>  2*(1) - (1)     = 1
 */
  b = n->dp[0];

  if ((b & 1) == 0) {
    return MP_VAL;
  }

  x = (((b + 2) & 4) << 1) + b; /* here x*a==1 mod 2**4 */
  x *= 2 - b * x;               /* here x*a==1 mod 2**8 */
  x *= 2 - b * x;               /* here x*a==1 mod 2**16 */
  x *= 2 - b * x;               /* here x*a==1 mod 2**32 */

  /* rho = -1/m mod b */
  *rho = (((mp_word)1 << ((mp_word) DIGIT_BIT)) - x) & MP_MASK;

  return MP_OKAY;
}

/* high level multiplication (handles sign) */
3107
int mp_mul (const mp_int * a, const mp_int * b, mp_int * c)
3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137
{
  int     res, neg;
  neg = (a->sign == b->sign) ? MP_ZPOS : MP_NEG;

  /* use Karatsuba? */
  if (MIN (a->used, b->used) >= KARATSUBA_MUL_CUTOFF) {
    res = mp_karatsuba_mul (a, b, c);
  } else 
  {
    /* can we use the fast multiplier?
     *
     * The fast multiplier can be used if the output will 
     * have less than MP_WARRAY digits and the number of 
     * digits won't affect carry propagation
     */
    int     digs = a->used + b->used + 1;

    if ((digs < MP_WARRAY) &&
        MIN(a->used, b->used) <= 
        (1 << ((CHAR_BIT * sizeof (mp_word)) - (2 * DIGIT_BIT)))) {
      res = fast_s_mp_mul_digs (a, b, c, digs);
    } else 
      res = s_mp_mul (a, b, c); /* uses s_mp_mul_digs */
  }
  c->sign = (c->used > 0) ? neg : MP_ZPOS;
  return res;
}

/* d = a * b (mod c) */
int
3138
mp_mulmod (const mp_int * a, const mp_int * b, mp_int * c, mp_int * d)
3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155
{
  int     res;
  mp_int  t;

  if ((res = mp_init (&t)) != MP_OKAY) {
    return res;
  }

  if ((res = mp_mul (a, b, &t)) != MP_OKAY) {
    mp_clear (&t);
    return res;
  }
  res = mp_mod (&t, c, d);
  mp_clear (&t);
  return res;
}

3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194
/* table of first PRIME_SIZE primes */
static const mp_digit __prime_tab[] = {
  0x0002, 0x0003, 0x0005, 0x0007, 0x000B, 0x000D, 0x0011, 0x0013,
  0x0017, 0x001D, 0x001F, 0x0025, 0x0029, 0x002B, 0x002F, 0x0035,
  0x003B, 0x003D, 0x0043, 0x0047, 0x0049, 0x004F, 0x0053, 0x0059,
  0x0061, 0x0065, 0x0067, 0x006B, 0x006D, 0x0071, 0x007F, 0x0083,
  0x0089, 0x008B, 0x0095, 0x0097, 0x009D, 0x00A3, 0x00A7, 0x00AD,
  0x00B3, 0x00B5, 0x00BF, 0x00C1, 0x00C5, 0x00C7, 0x00D3, 0x00DF,
  0x00E3, 0x00E5, 0x00E9, 0x00EF, 0x00F1, 0x00FB, 0x0101, 0x0107,
  0x010D, 0x010F, 0x0115, 0x0119, 0x011B, 0x0125, 0x0133, 0x0137,

  0x0139, 0x013D, 0x014B, 0x0151, 0x015B, 0x015D, 0x0161, 0x0167,
  0x016F, 0x0175, 0x017B, 0x017F, 0x0185, 0x018D, 0x0191, 0x0199,
  0x01A3, 0x01A5, 0x01AF, 0x01B1, 0x01B7, 0x01BB, 0x01C1, 0x01C9,
  0x01CD, 0x01CF, 0x01D3, 0x01DF, 0x01E7, 0x01EB, 0x01F3, 0x01F7,
  0x01FD, 0x0209, 0x020B, 0x021D, 0x0223, 0x022D, 0x0233, 0x0239,
  0x023B, 0x0241, 0x024B, 0x0251, 0x0257, 0x0259, 0x025F, 0x0265,
  0x0269, 0x026B, 0x0277, 0x0281, 0x0283, 0x0287, 0x028D, 0x0293,
  0x0295, 0x02A1, 0x02A5, 0x02AB, 0x02B3, 0x02BD, 0x02C5, 0x02CF,

  0x02D7, 0x02DD, 0x02E3, 0x02E7, 0x02EF, 0x02F5, 0x02F9, 0x0301,
  0x0305, 0x0313, 0x031D, 0x0329, 0x032B, 0x0335, 0x0337, 0x033B,
  0x033D, 0x0347, 0x0355, 0x0359, 0x035B, 0x035F, 0x036D, 0x0371,
  0x0373, 0x0377, 0x038B, 0x038F, 0x0397, 0x03A1, 0x03A9, 0x03AD,
  0x03B3, 0x03B9, 0x03C7, 0x03CB, 0x03D1, 0x03D7, 0x03DF, 0x03E5,
  0x03F1, 0x03F5, 0x03FB, 0x03FD, 0x0407, 0x0409, 0x040F, 0x0419,
  0x041B, 0x0425, 0x0427, 0x042D, 0x043F, 0x0443, 0x0445, 0x0449,
  0x044F, 0x0455, 0x045D, 0x0463, 0x0469, 0x047F, 0x0481, 0x048B,

  0x0493, 0x049D, 0x04A3, 0x04A9, 0x04B1, 0x04BD, 0x04C1, 0x04C7,
  0x04CD, 0x04CF, 0x04D5, 0x04E1, 0x04EB, 0x04FD, 0x04FF, 0x0503,
  0x0509, 0x050B, 0x0511, 0x0515, 0x0517, 0x051B, 0x0527, 0x0529,
  0x052F, 0x0551, 0x0557, 0x055D, 0x0565, 0x0577, 0x0581, 0x058F,
  0x0593, 0x0595, 0x0599, 0x059F, 0x05A7, 0x05AB, 0x05AD, 0x05B3,
  0x05BF, 0x05C9, 0x05CB, 0x05CF, 0x05D1, 0x05D5, 0x05DB, 0x05E7,
  0x05F3, 0x05FB, 0x0607, 0x060D, 0x0611, 0x0617, 0x061F, 0x0623,
  0x062B, 0x062F, 0x063D, 0x0641, 0x0647, 0x0649, 0x064D, 0x0653
};

3195 3196 3197 3198 3199
/* determines if an integers is divisible by one 
 * of the first PRIME_SIZE primes or not
 *
 * sets result to 0 if not, 1 if yes
 */
3200
static int mp_prime_is_divisible (const mp_int * a, int *result)
3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230
{
  int     err, ix;
  mp_digit res;

  /* default to not */
  *result = MP_NO;

  for (ix = 0; ix < PRIME_SIZE; ix++) {
    /* what is a mod __prime_tab[ix] */
    if ((err = mp_mod_d (a, __prime_tab[ix], &res)) != MP_OKAY) {
      return err;
    }

    /* is the residue zero? */
    if (res == 0) {
      *result = MP_YES;
      return MP_OKAY;
    }
  }

  return MP_OKAY;
}

/* Miller-Rabin test of "a" to the base of "b" as described in 
 * HAC pp. 139 Algorithm 4.24
 *
 * Sets result to 0 if definitely composite or 1 if probably prime.
 * Randomly the chance of error is no more than 1/4 and often 
 * very much lower.
 */
3231
static int mp_prime_miller_rabin (mp_int * a, const mp_int * b, int *result)
3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305
{
  mp_int  n1, y, r;
  int     s, j, err;

  /* default */
  *result = MP_NO;

  /* ensure b > 1 */
  if (mp_cmp_d(b, 1) != MP_GT) {
     return MP_VAL;
  }     

  /* get n1 = a - 1 */
  if ((err = mp_init_copy (&n1, a)) != MP_OKAY) {
    return err;
  }
  if ((err = mp_sub_d (&n1, 1, &n1)) != MP_OKAY) {
    goto __N1;
  }

  /* set 2**s * r = n1 */
  if ((err = mp_init_copy (&r, &n1)) != MP_OKAY) {
    goto __N1;
  }

  /* count the number of least significant bits
   * which are zero
   */
  s = mp_cnt_lsb(&r);

  /* now divide n - 1 by 2**s */
  if ((err = mp_div_2d (&r, s, &r, NULL)) != MP_OKAY) {
    goto __R;
  }

  /* compute y = b**r mod a */
  if ((err = mp_init (&y)) != MP_OKAY) {
    goto __R;
  }
  if ((err = mp_exptmod (b, &r, a, &y)) != MP_OKAY) {
    goto __Y;
  }

  /* if y != 1 and y != n1 do */
  if (mp_cmp_d (&y, 1) != MP_EQ && mp_cmp (&y, &n1) != MP_EQ) {
    j = 1;
    /* while j <= s-1 and y != n1 */
    while ((j <= (s - 1)) && mp_cmp (&y, &n1) != MP_EQ) {
      if ((err = mp_sqrmod (&y, a, &y)) != MP_OKAY) {
         goto __Y;
      }

      /* if y == 1 then composite */
      if (mp_cmp_d (&y, 1) == MP_EQ) {
         goto __Y;
      }

      ++j;
    }

    /* if y != n1 then composite */
    if (mp_cmp (&y, &n1) != MP_EQ) {
      goto __Y;
    }
  }

  /* probably prime now */
  *result = MP_YES;
__Y:mp_clear (&y);
__R:mp_clear (&r);
__N1:mp_clear (&n1);
  return err;
}

3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367
/* performs a variable number of rounds of Miller-Rabin
 *
 * Probability of error after t rounds is no more than

 *
 * Sets result to 1 if probably prime, 0 otherwise
 */
static int mp_prime_is_prime (mp_int * a, int t, int *result)
{
  mp_int  b;
  int     ix, err, res;

  /* default to no */
  *result = MP_NO;

  /* valid value of t? */
  if (t <= 0 || t > PRIME_SIZE) {
    return MP_VAL;
  }

  /* is the input equal to one of the primes in the table? */
  for (ix = 0; ix < PRIME_SIZE; ix++) {
      if (mp_cmp_d(a, __prime_tab[ix]) == MP_EQ) {
         *result = 1;
         return MP_OKAY;
      }
  }

  /* first perform trial division */
  if ((err = mp_prime_is_divisible (a, &res)) != MP_OKAY) {
    return err;
  }

  /* return if it was trivially divisible */
  if (res == MP_YES) {
    return MP_OKAY;
  }

  /* now perform the miller-rabin rounds */
  if ((err = mp_init (&b)) != MP_OKAY) {
    return err;
  }

  for (ix = 0; ix < t; ix++) {
    /* set the prime */
    mp_set (&b, __prime_tab[ix]);

    if ((err = mp_prime_miller_rabin (a, &b, &res)) != MP_OKAY) {
      goto __B;
    }

    if (res == MP_NO) {
      goto __B;
    }
  }

  /* passed the test */
  *result = MP_YES;
__B:mp_clear (&b);
  return err;
}

3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427
static const struct {
   int k, t;
} sizes[] = {
{   128,    28 },
{   256,    16 },
{   384,    10 },
{   512,     7 },
{   640,     6 },
{   768,     5 },
{   896,     4 },
{  1024,     4 }
};

/* returns # of RM trials required for a given bit size */
int mp_prime_rabin_miller_trials(int size)
{
   int x;

   for (x = 0; x < (int)(sizeof(sizes)/(sizeof(sizes[0]))); x++) {
       if (sizes[x].k == size) {
          return sizes[x].t;
       } else if (sizes[x].k > size) {
          return (x == 0) ? sizes[0].t : sizes[x - 1].t;
       }
   }
   return sizes[x-1].t + 1;
}

/* makes a truly random prime of a given size (bits),
 *
 * Flags are as follows:
 * 
 *   LTM_PRIME_BBS      - make prime congruent to 3 mod 4
 *   LTM_PRIME_SAFE     - make sure (p-1)/2 is prime as well (implies LTM_PRIME_BBS)
 *   LTM_PRIME_2MSB_OFF - make the 2nd highest bit zero
 *   LTM_PRIME_2MSB_ON  - make the 2nd highest bit one
 *
 * You have to supply a callback which fills in a buffer with random bytes.  "dat" is a parameter you can
 * have passed to the callback (e.g. a state or something).  This function doesn't use "dat" itself
 * so it can be NULL
 *
 */

/* This is possibly the mother of all prime generation functions, muahahahahaha! */
int mp_prime_random_ex(mp_int *a, int t, int size, int flags, ltm_prime_callback cb, void *dat)
{
   unsigned char *tmp, maskAND, maskOR_msb, maskOR_lsb;
   int res, err, bsize, maskOR_msb_offset;

   /* sanity check the input */
   if (size <= 1 || t <= 0) {
      return MP_VAL;
   }

   /* LTM_PRIME_SAFE implies LTM_PRIME_BBS */
   if (flags & LTM_PRIME_SAFE) {
      flags |= LTM_PRIME_BBS;
   }

   /* calc the byte size */
3428
   bsize = (size>>3)+((size&7)?1:0);
3429 3430

   /* we need a buffer of bsize bytes */
3431
   tmp = HeapAlloc(GetProcessHeap(), 0, bsize);
3432 3433 3434 3435 3436
   if (tmp == NULL) {
      return MP_MEM;
   }

   /* calc the maskAND value for the MSbyte*/
3437
   maskAND = ((size&7) == 0) ? 0xFF : (0xFF >> (8 - (size & 7))); 
3438 3439 3440

   /* calc the maskOR_msb */
   maskOR_msb        = 0;
3441
   maskOR_msb_offset = ((size & 7) == 1) ? 1 : 0;
3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495
   if (flags & LTM_PRIME_2MSB_ON) {
      maskOR_msb     |= 1 << ((size - 2) & 7);
   } else if (flags & LTM_PRIME_2MSB_OFF) {
      maskAND        &= ~(1 << ((size - 2) & 7));
   }

   /* get the maskOR_lsb */
   maskOR_lsb         = 0;
   if (flags & LTM_PRIME_BBS) {
      maskOR_lsb     |= 3;
   }

   do {
      /* read the bytes */
      if (cb(tmp, bsize, dat) != bsize) {
         err = MP_VAL;
         goto error;
      }
 
      /* work over the MSbyte */
      tmp[0]    &= maskAND;
      tmp[0]    |= 1 << ((size - 1) & 7);

      /* mix in the maskORs */
      tmp[maskOR_msb_offset]   |= maskOR_msb;
      tmp[bsize-1]             |= maskOR_lsb;

      /* read it in */
      if ((err = mp_read_unsigned_bin(a, tmp, bsize)) != MP_OKAY)     { goto error; }

      /* is it prime? */
      if ((err = mp_prime_is_prime(a, t, &res)) != MP_OKAY)           { goto error; }
      if (res == MP_NO) {  
         continue;
      }

      if (flags & LTM_PRIME_SAFE) {
         /* see if (a-1)/2 is prime */
         if ((err = mp_sub_d(a, 1, a)) != MP_OKAY)                    { goto error; }
         if ((err = mp_div_2(a, a)) != MP_OKAY)                       { goto error; }
 
         /* is it prime? */
         if ((err = mp_prime_is_prime(a, t, &res)) != MP_OKAY)        { goto error; }
      }
   } while (res == MP_NO);

   if (flags & LTM_PRIME_SAFE) {
      /* restore a to the original value */
      if ((err = mp_mul_2(a, a)) != MP_OKAY)                          { goto error; }
      if ((err = mp_add_d(a, 1, a)) != MP_OKAY)                       { goto error; }
   }

   err = MP_OKAY;
error:
3496
   HeapFree(GetProcessHeap(), 0, tmp);
3497 3498 3499
   return err;
}

3500
/* reads an unsigned char array, assumes the msb is stored first [big endian] */
3501
int
3502
mp_read_unsigned_bin (mp_int * a, const unsigned char *b, int c)
3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533
{
  int     res;

  /* make sure there are at least two digits */
  if (a->alloc < 2) {
     if ((res = mp_grow(a, 2)) != MP_OKAY) {
        return res;
     }
  }

  /* zero the int */
  mp_zero (a);

  /* read the bytes in */
  while (c-- > 0) {
    if ((res = mp_mul_2d (a, 8, a)) != MP_OKAY) {
      return res;
    }

      a->dp[0] |= *b++;
      a->used += 1;
  }
  mp_clamp (a);
  return MP_OKAY;
}

/* reduces x mod m, assumes 0 < x < m**2, mu is 
 * precomputed via mp_reduce_setup.
 * From HAC pp.604 Algorithm 14.42
 */
int
3534
mp_reduce (mp_int * x, const mp_int * m, const mp_int * mu)
3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599
{
  mp_int  q;
  int     res, um = m->used;

  /* q = x */
  if ((res = mp_init_copy (&q, x)) != MP_OKAY) {
    return res;
  }

  /* q1 = x / b**(k-1)  */
  mp_rshd (&q, um - 1);         

  /* according to HAC this optimization is ok */
  if (((unsigned long) um) > (((mp_digit)1) << (DIGIT_BIT - 1))) {
    if ((res = mp_mul (&q, mu, &q)) != MP_OKAY) {
      goto CLEANUP;
    }
  } else {
    if ((res = s_mp_mul_high_digs (&q, mu, &q, um - 1)) != MP_OKAY) {
      goto CLEANUP;
    }
  }

  /* q3 = q2 / b**(k+1) */
  mp_rshd (&q, um + 1);         

  /* x = x mod b**(k+1), quick (no division) */
  if ((res = mp_mod_2d (x, DIGIT_BIT * (um + 1), x)) != MP_OKAY) {
    goto CLEANUP;
  }

  /* q = q * m mod b**(k+1), quick (no division) */
  if ((res = s_mp_mul_digs (&q, m, &q, um + 1)) != MP_OKAY) {
    goto CLEANUP;
  }

  /* x = x - q */
  if ((res = mp_sub (x, &q, x)) != MP_OKAY) {
    goto CLEANUP;
  }

  /* If x < 0, add b**(k+1) to it */
  if (mp_cmp_d (x, 0) == MP_LT) {
    mp_set (&q, 1);
    if ((res = mp_lshd (&q, um + 1)) != MP_OKAY)
      goto CLEANUP;
    if ((res = mp_add (x, &q, x)) != MP_OKAY)
      goto CLEANUP;
  }

  /* Back off if it's too big */
  while (mp_cmp (x, m) != MP_LT) {
    if ((res = s_mp_sub (x, m, x)) != MP_OKAY) {
      goto CLEANUP;
    }
  }
  
CLEANUP:
  mp_clear (&q);

  return res;
}

/* reduces a modulo n where n is of the form 2**p - d */
int
3600
mp_reduce_2k(mp_int *a, const mp_int *n, mp_digit d)
3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638
{
   mp_int q;
   int    p, res;
   
   if ((res = mp_init(&q)) != MP_OKAY) {
      return res;
   }
   
   p = mp_count_bits(n);    
top:
   /* q = a/2**p, a = a mod 2**p */
   if ((res = mp_div_2d(a, p, &q, a)) != MP_OKAY) {
      goto ERR;
   }
   
   if (d != 1) {
      /* q = q * d */
      if ((res = mp_mul_d(&q, d, &q)) != MP_OKAY) { 
         goto ERR;
      }
   }
   
   /* a = a + q */
   if ((res = s_mp_add(a, &q, a)) != MP_OKAY) {
      goto ERR;
   }
   
   if (mp_cmp_mag(a, n) != MP_LT) {
      s_mp_sub(a, n, a);
      goto top;
   }
   
ERR:
   mp_clear(&q);
   return res;
}

/* determines the setup value */
3639
static int
3640
mp_reduce_2k_setup(const mp_int *a, mp_digit *d)
3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665
{
   int res, p;
   mp_int tmp;
   
   if ((res = mp_init(&tmp)) != MP_OKAY) {
      return res;
   }
   
   p = mp_count_bits(a);
   if ((res = mp_2expt(&tmp, p)) != MP_OKAY) {
      mp_clear(&tmp);
      return res;
   }
   
   if ((res = s_mp_sub(&tmp, a, &tmp)) != MP_OKAY) {
      mp_clear(&tmp);
      return res;
   }
   
   *d = tmp.dp[0];
   mp_clear(&tmp);
   return MP_OKAY;
}

/* pre-calculate the value required for Barrett reduction
3666
 * For a given modulus "b" it calculates the value required in "a"
3667
 */
3668
int mp_reduce_setup (mp_int * a, const mp_int * b)
3669 3670
{
  int     res;
3671

3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717
  if ((res = mp_2expt (a, b->used * 2 * DIGIT_BIT)) != MP_OKAY) {
    return res;
  }
  return mp_div (a, b, a, NULL);
}

/* set to a digit */
void mp_set (mp_int * a, mp_digit b)
{
  mp_zero (a);
  a->dp[0] = b & MP_MASK;
  a->used  = (a->dp[0] != 0) ? 1 : 0;
}

/* set a 32-bit const */
int mp_set_int (mp_int * a, unsigned long b)
{
  int     x, res;

  mp_zero (a);
  
  /* set four bits at a time */
  for (x = 0; x < 8; x++) {
    /* shift the number up four bits */
    if ((res = mp_mul_2d (a, 4, a)) != MP_OKAY) {
      return res;
    }

    /* OR in the top four bits of the source */
    a->dp[0] |= (b >> 28) & 15;

    /* shift the source up to the next four bits */
    b <<= 4;

    /* ensure that digits are not clamped off */
    a->used += 1;
  }
  mp_clamp (a);
  return MP_OKAY;
}

/* shrink a bignum */
int mp_shrink (mp_int * a)
{
  mp_digit *tmp;
  if (a->alloc != a->used && a->used > 0) {
3718
    if ((tmp = HeapReAlloc(GetProcessHeap(), 0, a->dp, sizeof (mp_digit) * a->used)) == NULL) {
3719 3720 3721 3722 3723 3724 3725 3726 3727 3728
      return MP_MEM;
    }
    a->dp    = tmp;
    a->alloc = a->used;
  }
  return MP_OKAY;
}

/* computes b = a*a */
int
3729
mp_sqr (const mp_int * a, mp_int * b)
3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750
{
  int     res;

if (a->used >= KARATSUBA_SQR_CUTOFF) {
    res = mp_karatsuba_sqr (a, b);
  } else 
  {
    /* can we use the fast comba multiplier? */
    if ((a->used * 2 + 1) < MP_WARRAY && 
         a->used < 
         (1 << (sizeof(mp_word) * CHAR_BIT - 2*DIGIT_BIT - 1))) {
      res = fast_s_mp_sqr (a, b);
    } else
      res = s_mp_sqr (a, b);
  }
  b->sign = MP_ZPOS;
  return res;
}

/* c = a * a (mod b) */
int
3751
mp_sqrmod (const mp_int * a, mp_int * b, mp_int * c)
3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874
{
  int     res;
  mp_int  t;

  if ((res = mp_init (&t)) != MP_OKAY) {
    return res;
  }

  if ((res = mp_sqr (a, &t)) != MP_OKAY) {
    mp_clear (&t);
    return res;
  }
  res = mp_mod (&t, b, c);
  mp_clear (&t);
  return res;
}

/* high level subtraction (handles signs) */
int
mp_sub (mp_int * a, mp_int * b, mp_int * c)
{
  int     sa, sb, res;

  sa = a->sign;
  sb = b->sign;

  if (sa != sb) {
    /* subtract a negative from a positive, OR */
    /* subtract a positive from a negative. */
    /* In either case, ADD their magnitudes, */
    /* and use the sign of the first number. */
    c->sign = sa;
    res = s_mp_add (a, b, c);
  } else {
    /* subtract a positive from a positive, OR */
    /* subtract a negative from a negative. */
    /* First, take the difference between their */
    /* magnitudes, then... */
    if (mp_cmp_mag (a, b) != MP_LT) {
      /* Copy the sign from the first */
      c->sign = sa;
      /* The first has a larger or equal magnitude */
      res = s_mp_sub (a, b, c);
    } else {
      /* The result has the *opposite* sign from */
      /* the first number. */
      c->sign = (sa == MP_ZPOS) ? MP_NEG : MP_ZPOS;
      /* The second has a larger magnitude */
      res = s_mp_sub (b, a, c);
    }
  }
  return res;
}

/* single digit subtraction */
int
mp_sub_d (mp_int * a, mp_digit b, mp_int * c)
{
  mp_digit *tmpa, *tmpc, mu;
  int       res, ix, oldused;

  /* grow c as required */
  if (c->alloc < a->used + 1) {
     if ((res = mp_grow(c, a->used + 1)) != MP_OKAY) {
        return res;
     }
  }

  /* if a is negative just do an unsigned
   * addition [with fudged signs]
   */
  if (a->sign == MP_NEG) {
     a->sign = MP_ZPOS;
     res     = mp_add_d(a, b, c);
     a->sign = c->sign = MP_NEG;
     return res;
  }

  /* setup regs */
  oldused = c->used;
  tmpa    = a->dp;
  tmpc    = c->dp;

  /* if a <= b simply fix the single digit */
  if ((a->used == 1 && a->dp[0] <= b) || a->used == 0) {
     if (a->used == 1) {
        *tmpc++ = b - *tmpa;
     } else {
        *tmpc++ = b;
     }
     ix      = 1;

     /* negative/1digit */
     c->sign = MP_NEG;
     c->used = 1;
  } else {
     /* positive/size */
     c->sign = MP_ZPOS;
     c->used = a->used;

     /* subtract first digit */
     *tmpc    = *tmpa++ - b;
     mu       = *tmpc >> (sizeof(mp_digit) * CHAR_BIT - 1);
     *tmpc++ &= MP_MASK;

     /* handle rest of the digits */
     for (ix = 1; ix < a->used; ix++) {
        *tmpc    = *tmpa++ - mu;
        mu       = *tmpc >> (sizeof(mp_digit) * CHAR_BIT - 1);
        *tmpc++ &= MP_MASK;
     }
  }

  /* zero excess digits */
  while (ix++ < oldused) {
     *tmpc++ = 0;
  }
  mp_clamp(c);
  return MP_OKAY;
}

/* store in unsigned [big endian] format */
int
3875
mp_to_unsigned_bin (const mp_int * a, unsigned char *b)
3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898
{
  int     x, res;
  mp_int  t;

  if ((res = mp_init_copy (&t, a)) != MP_OKAY) {
    return res;
  }

  x = 0;
  while (mp_iszero (&t) == 0) {
    b[x++] = (unsigned char) (t.dp[0] & 255);
    if ((res = mp_div_2d (&t, 8, &t, NULL)) != MP_OKAY) {
      mp_clear (&t);
      return res;
    }
  }
  bn_reverse (b, x);
  mp_clear (&t);
  return MP_OKAY;
}

/* get the size for an unsigned equivalent */
int
3899
mp_unsigned_bin_size (const mp_int * a)
3900 3901 3902 3903 3904 3905
{
  int     size = mp_count_bits (a);
  return (size / 8 + ((size & 7) != 0 ? 1 : 0));
}

/* reverse an array, used for radix code */
3906
static void
3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923
bn_reverse (unsigned char *s, int len)
{
  int     ix, iy;
  unsigned char t;

  ix = 0;
  iy = len - 1;
  while (ix < iy) {
    t     = s[ix];
    s[ix] = s[iy];
    s[iy] = t;
    ++ix;
    --iy;
  }
}

/* low level addition, based on HAC pp.594, Algorithm 14.7 */
3924
static int
3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010
s_mp_add (mp_int * a, mp_int * b, mp_int * c)
{
  mp_int *x;
  int     olduse, res, min, max;

  /* find sizes, we let |a| <= |b| which means we have to sort
   * them.  "x" will point to the input with the most digits
   */
  if (a->used > b->used) {
    min = b->used;
    max = a->used;
    x = a;
  } else {
    min = a->used;
    max = b->used;
    x = b;
  }

  /* init result */
  if (c->alloc < max + 1) {
    if ((res = mp_grow (c, max + 1)) != MP_OKAY) {
      return res;
    }
  }

  /* get old used digit count and set new one */
  olduse = c->used;
  c->used = max + 1;

  {
    register mp_digit u, *tmpa, *tmpb, *tmpc;
    register int i;

    /* alias for digit pointers */

    /* first input */
    tmpa = a->dp;

    /* second input */
    tmpb = b->dp;

    /* destination */
    tmpc = c->dp;

    /* zero the carry */
    u = 0;
    for (i = 0; i < min; i++) {
      /* Compute the sum at one digit, T[i] = A[i] + B[i] + U */
      *tmpc = *tmpa++ + *tmpb++ + u;

      /* U = carry bit of T[i] */
      u = *tmpc >> ((mp_digit)DIGIT_BIT);

      /* take away carry bit from T[i] */
      *tmpc++ &= MP_MASK;
    }

    /* now copy higher words if any, that is in A+B 
     * if A or B has more digits add those in 
     */
    if (min != max) {
      for (; i < max; i++) {
        /* T[i] = X[i] + U */
        *tmpc = x->dp[i] + u;

        /* U = carry bit of T[i] */
        u = *tmpc >> ((mp_digit)DIGIT_BIT);

        /* take away carry bit from T[i] */
        *tmpc++ &= MP_MASK;
      }
    }

    /* add carry */
    *tmpc++ = u;

    /* clear digits above oldused */
    for (i = c->used; i < olduse; i++) {
      *tmpc++ = 0;
    }
  }

  mp_clamp (c);
  return MP_OKAY;
}

4011
static int s_mp_exptmod (const mp_int * G, const mp_int * X, mp_int * P, mp_int * Y)
4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123
{
  mp_int  M[256], res, mu;
  mp_digit buf;
  int     err, bitbuf, bitcpy, bitcnt, mode, digidx, x, y, winsize;

  /* find window size */
  x = mp_count_bits (X);
  if (x <= 7) {
    winsize = 2;
  } else if (x <= 36) {
    winsize = 3;
  } else if (x <= 140) {
    winsize = 4;
  } else if (x <= 450) {
    winsize = 5;
  } else if (x <= 1303) {
    winsize = 6;
  } else if (x <= 3529) {
    winsize = 7;
  } else {
    winsize = 8;
  }

  /* init M array */
  /* init first cell */
  if ((err = mp_init(&M[1])) != MP_OKAY) {
     return err; 
  }

  /* now init the second half of the array */
  for (x = 1<<(winsize-1); x < (1 << winsize); x++) {
    if ((err = mp_init(&M[x])) != MP_OKAY) {
      for (y = 1<<(winsize-1); y < x; y++) {
        mp_clear (&M[y]);
      }
      mp_clear(&M[1]);
      return err;
    }
  }

  /* create mu, used for Barrett reduction */
  if ((err = mp_init (&mu)) != MP_OKAY) {
    goto __M;
  }
  if ((err = mp_reduce_setup (&mu, P)) != MP_OKAY) {
    goto __MU;
  }

  /* create M table
   *
   * The M table contains powers of the base, 
   * e.g. M[x] = G**x mod P
   *
   * The first half of the table is not 
   * computed though accept for M[0] and M[1]
   */
  if ((err = mp_mod (G, P, &M[1])) != MP_OKAY) {
    goto __MU;
  }

  /* compute the value at M[1<<(winsize-1)] by squaring 
   * M[1] (winsize-1) times 
   */
  if ((err = mp_copy (&M[1], &M[1 << (winsize - 1)])) != MP_OKAY) {
    goto __MU;
  }

  for (x = 0; x < (winsize - 1); x++) {
    if ((err = mp_sqr (&M[1 << (winsize - 1)], 
                       &M[1 << (winsize - 1)])) != MP_OKAY) {
      goto __MU;
    }
    if ((err = mp_reduce (&M[1 << (winsize - 1)], P, &mu)) != MP_OKAY) {
      goto __MU;
    }
  }

  /* create upper table, that is M[x] = M[x-1] * M[1] (mod P)
   * for x = (2**(winsize - 1) + 1) to (2**winsize - 1)
   */
  for (x = (1 << (winsize - 1)) + 1; x < (1 << winsize); x++) {
    if ((err = mp_mul (&M[x - 1], &M[1], &M[x])) != MP_OKAY) {
      goto __MU;
    }
    if ((err = mp_reduce (&M[x], P, &mu)) != MP_OKAY) {
      goto __MU;
    }
  }

  /* setup result */
  if ((err = mp_init (&res)) != MP_OKAY) {
    goto __MU;
  }
  mp_set (&res, 1);

  /* set initial mode and bit cnt */
  mode   = 0;
  bitcnt = 1;
  buf    = 0;
  digidx = X->used - 1;
  bitcpy = 0;
  bitbuf = 0;

  for (;;) {
    /* grab next digit as required */
    if (--bitcnt == 0) {
      /* if digidx == -1 we are out of digits */
      if (digidx == -1) {
        break;
      }
      /* read next digit and reset the bitcnt */
      buf    = X->dp[digidx--];
4124
      bitcnt = DIGIT_BIT;
4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217
    }

    /* grab the next msb from the exponent */
    y     = (buf >> (mp_digit)(DIGIT_BIT - 1)) & 1;
    buf <<= (mp_digit)1;

    /* if the bit is zero and mode == 0 then we ignore it
     * These represent the leading zero bits before the first 1 bit
     * in the exponent.  Technically this opt is not required but it
     * does lower the # of trivial squaring/reductions used
     */
    if (mode == 0 && y == 0) {
      continue;
    }

    /* if the bit is zero and mode == 1 then we square */
    if (mode == 1 && y == 0) {
      if ((err = mp_sqr (&res, &res)) != MP_OKAY) {
        goto __RES;
      }
      if ((err = mp_reduce (&res, P, &mu)) != MP_OKAY) {
        goto __RES;
      }
      continue;
    }

    /* else we add it to the window */
    bitbuf |= (y << (winsize - ++bitcpy));
    mode    = 2;

    if (bitcpy == winsize) {
      /* ok window is filled so square as required and multiply  */
      /* square first */
      for (x = 0; x < winsize; x++) {
        if ((err = mp_sqr (&res, &res)) != MP_OKAY) {
          goto __RES;
        }
        if ((err = mp_reduce (&res, P, &mu)) != MP_OKAY) {
          goto __RES;
        }
      }

      /* then multiply */
      if ((err = mp_mul (&res, &M[bitbuf], &res)) != MP_OKAY) {
        goto __RES;
      }
      if ((err = mp_reduce (&res, P, &mu)) != MP_OKAY) {
        goto __RES;
      }

      /* empty window and reset */
      bitcpy = 0;
      bitbuf = 0;
      mode   = 1;
    }
  }

  /* if bits remain then square/multiply */
  if (mode == 2 && bitcpy > 0) {
    /* square then multiply if the bit is set */
    for (x = 0; x < bitcpy; x++) {
      if ((err = mp_sqr (&res, &res)) != MP_OKAY) {
        goto __RES;
      }
      if ((err = mp_reduce (&res, P, &mu)) != MP_OKAY) {
        goto __RES;
      }

      bitbuf <<= 1;
      if ((bitbuf & (1 << winsize)) != 0) {
        /* then multiply */
        if ((err = mp_mul (&res, &M[1], &res)) != MP_OKAY) {
          goto __RES;
        }
        if ((err = mp_reduce (&res, P, &mu)) != MP_OKAY) {
          goto __RES;
        }
      }
    }
  }

  mp_exch (&res, Y);
  err = MP_OKAY;
__RES:mp_clear (&res);
__MU:mp_clear (&mu);
__M:
  mp_clear(&M[1]);
  for (x = 1<<(winsize-1); x < (1 << winsize); x++) {
    mp_clear (&M[x]);
  }
  return err;
}

4218
/* multiplies |a| * |b| and only computes up to digs digits of result
4219 4220 4221
 * HAC pp. 595, Algorithm 14.12  Modified so you can control how 
 * many digits of output are created.
 */
4222
static int
4223
s_mp_mul_digs (const mp_int * a, const mp_int * b, mp_int * c, int digs)
4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290
{
  mp_int  t;
  int     res, pa, pb, ix, iy;
  mp_digit u;
  mp_word r;
  mp_digit tmpx, *tmpt, *tmpy;

  /* can we use the fast multiplier? */
  if (((digs) < MP_WARRAY) &&
      MIN (a->used, b->used) < 
          (1 << ((CHAR_BIT * sizeof (mp_word)) - (2 * DIGIT_BIT)))) {
    return fast_s_mp_mul_digs (a, b, c, digs);
  }

  if ((res = mp_init_size (&t, digs)) != MP_OKAY) {
    return res;
  }
  t.used = digs;

  /* compute the digits of the product directly */
  pa = a->used;
  for (ix = 0; ix < pa; ix++) {
    /* set the carry to zero */
    u = 0;

    /* limit ourselves to making digs digits of output */
    pb = MIN (b->used, digs - ix);

    /* setup some aliases */
    /* copy of the digit from a used within the nested loop */
    tmpx = a->dp[ix];
    
    /* an alias for the destination shifted ix places */
    tmpt = t.dp + ix;
    
    /* an alias for the digits of b */
    tmpy = b->dp;

    /* compute the columns of the output and propagate the carry */
    for (iy = 0; iy < pb; iy++) {
      /* compute the column as a mp_word */
      r       = ((mp_word)*tmpt) +
                ((mp_word)tmpx) * ((mp_word)*tmpy++) +
                ((mp_word) u);

      /* the new column is the lower part of the result */
      *tmpt++ = (mp_digit) (r & ((mp_word) MP_MASK));

      /* get the carry word from the result */
      u       = (mp_digit) (r >> ((mp_word) DIGIT_BIT));
    }
    /* set carry if it is placed below digs */
    if (ix + iy < digs) {
      *tmpt = u;
    }
  }

  mp_clamp (&t);
  mp_exch (&t, c);

  mp_clear (&t);
  return MP_OKAY;
}

/* multiplies |a| * |b| and does not compute the lower digs digits
 * [meant to get the higher part of the product]
 */
4291
static int
4292
s_mp_mul_high_digs (const mp_int * a, const mp_int * b, mp_int * c, int digs)
4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346
{
  mp_int  t;
  int     res, pa, pb, ix, iy;
  mp_digit u;
  mp_word r;
  mp_digit tmpx, *tmpt, *tmpy;

  /* can we use the fast multiplier? */
  if (((a->used + b->used + 1) < MP_WARRAY)
      && MIN (a->used, b->used) < (1 << ((CHAR_BIT * sizeof (mp_word)) - (2 * DIGIT_BIT)))) {
    return fast_s_mp_mul_high_digs (a, b, c, digs);
  }

  if ((res = mp_init_size (&t, a->used + b->used + 1)) != MP_OKAY) {
    return res;
  }
  t.used = a->used + b->used + 1;

  pa = a->used;
  pb = b->used;
  for (ix = 0; ix < pa; ix++) {
    /* clear the carry */
    u = 0;

    /* left hand side of A[ix] * B[iy] */
    tmpx = a->dp[ix];

    /* alias to the address of where the digits will be stored */
    tmpt = &(t.dp[digs]);

    /* alias for where to read the right hand side from */
    tmpy = b->dp + (digs - ix);

    for (iy = digs - ix; iy < pb; iy++) {
      /* calculate the double precision result */
      r       = ((mp_word)*tmpt) +
                ((mp_word)tmpx) * ((mp_word)*tmpy++) +
                ((mp_word) u);

      /* get the lower part */
      *tmpt++ = (mp_digit) (r & ((mp_word) MP_MASK));

      /* carry the carry */
      u       = (mp_digit) (r >> ((mp_word) DIGIT_BIT));
    }
    *tmpt = u;
  }
  mp_clamp (&t);
  mp_exch (&t, c);
  mp_clear (&t);
  return MP_OKAY;
}

/* low level squaring, b = a*a, HAC pp.596-597, Algorithm 14.16 */
4347
static int
4348
s_mp_sqr (const mp_int * a, mp_int * b)
4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396
{
  mp_int  t;
  int     res, ix, iy, pa;
  mp_word r;
  mp_digit u, tmpx, *tmpt;

  pa = a->used;
  if ((res = mp_init_size (&t, 2*pa + 1)) != MP_OKAY) {
    return res;
  }

  /* default used is maximum possible size */
  t.used = 2*pa + 1;

  for (ix = 0; ix < pa; ix++) {
    /* first calculate the digit at 2*ix */
    /* calculate double precision result */
    r = ((mp_word) t.dp[2*ix]) +
        ((mp_word)a->dp[ix])*((mp_word)a->dp[ix]);

    /* store lower part in result */
    t.dp[ix+ix] = (mp_digit) (r & ((mp_word) MP_MASK));

    /* get the carry */
    u           = (mp_digit)(r >> ((mp_word) DIGIT_BIT));

    /* left hand side of A[ix] * A[iy] */
    tmpx        = a->dp[ix];

    /* alias for where to store the results */
    tmpt        = t.dp + (2*ix + 1);
    
    for (iy = ix + 1; iy < pa; iy++) {
      /* first calculate the product */
      r       = ((mp_word)tmpx) * ((mp_word)a->dp[iy]);

      /* now calculate the double precision result, note we use
       * addition instead of *2 since it's easier to optimize
       */
      r       = ((mp_word) *tmpt) + r + r + ((mp_word) u);

      /* store lower part */
      *tmpt++ = (mp_digit) (r & ((mp_word) MP_MASK));

      /* get carry */
      u       = (mp_digit)(r >> ((mp_word) DIGIT_BIT));
    }
    /* propagate upwards */
4397
    while (u != 0) {
4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411
      r       = ((mp_word) *tmpt) + ((mp_word) u);
      *tmpt++ = (mp_digit) (r & ((mp_word) MP_MASK));
      u       = (mp_digit)(r >> ((mp_word) DIGIT_BIT));
    }
  }

  mp_clamp (&t);
  mp_exch (&t, b);
  mp_clear (&t);
  return MP_OKAY;
}

/* low level subtraction (assumes |a| > |b|), HAC pp.595 Algorithm 14.9 */
int
4412
s_mp_sub (const mp_int * a, const mp_int * b, mp_int * c)
4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475
{
  int     olduse, res, min, max;

  /* find sizes */
  min = b->used;
  max = a->used;

  /* init result */
  if (c->alloc < max) {
    if ((res = mp_grow (c, max)) != MP_OKAY) {
      return res;
    }
  }
  olduse = c->used;
  c->used = max;

  {
    register mp_digit u, *tmpa, *tmpb, *tmpc;
    register int i;

    /* alias for digit pointers */
    tmpa = a->dp;
    tmpb = b->dp;
    tmpc = c->dp;

    /* set carry to zero */
    u = 0;
    for (i = 0; i < min; i++) {
      /* T[i] = A[i] - B[i] - U */
      *tmpc = *tmpa++ - *tmpb++ - u;

      /* U = carry bit of T[i]
       * Note this saves performing an AND operation since
       * if a carry does occur it will propagate all the way to the
       * MSB.  As a result a single shift is enough to get the carry
       */
      u = *tmpc >> ((mp_digit)(CHAR_BIT * sizeof (mp_digit) - 1));

      /* Clear carry from T[i] */
      *tmpc++ &= MP_MASK;
    }

    /* now copy higher words if any, e.g. if A has more digits than B  */
    for (; i < max; i++) {
      /* T[i] = A[i] - U */
      *tmpc = *tmpa++ - u;

      /* U = carry bit of T[i] */
      u = *tmpc >> ((mp_digit)(CHAR_BIT * sizeof (mp_digit) - 1));

      /* Clear carry from T[i] */
      *tmpc++ &= MP_MASK;
    }

    /* clear digits above used (since we may not have grown result above) */
    for (i = c->used; i < olduse; i++) {
      *tmpc++ = 0;
    }
  }

  mp_clamp (c);
  return MP_OKAY;
}