cpu_i386.c 25.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
/*
 * File cpu_i386.c
 *
 * Copyright (C) 2009-2009, Eric Pouech.
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with this library; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA
 */

#include <assert.h>

#include "ntstatus.h"
#define WIN32_NO_STATUS
#include "dbghelp_private.h"
#include "wine/winbase16.h"
#include "winternl.h"
#include "wine/debug.h"

WINE_DEFAULT_DEBUG_CHANNEL(dbghelp);

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
#define V86_FLAG  0x00020000

#define IS_VM86_MODE(ctx) (ctx->EFlags & V86_FLAG)

#ifdef __i386__
static ADDRESS_MODE get_selector_type(HANDLE hThread, const CONTEXT* ctx, WORD sel)
{
    LDT_ENTRY	le;

    if (IS_VM86_MODE(ctx)) return AddrModeReal;
    /* null or system selector */
    if (!(sel & 4) || ((sel >> 3) < 17)) return AddrModeFlat;
    if (hThread && GetThreadSelectorEntry(hThread, sel, &le))
        return le.HighWord.Bits.Default_Big ? AddrMode1632 : AddrMode1616;
    /* selector doesn't exist */
    return -1;
}

50 51
static BOOL i386_build_addr(HANDLE hThread, const CONTEXT* ctx, ADDRESS64* addr,
                            unsigned seg, unsigned long offset)
52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74
{
    addr->Mode    = AddrModeFlat;
    addr->Segment = seg;
    addr->Offset  = offset;
    if (seg)
    {
        switch (addr->Mode = get_selector_type(hThread, ctx, seg))
        {
        case AddrModeReal:
        case AddrMode1616:
            addr->Offset &= 0xffff;
            break;
        case AddrModeFlat:
        case AddrMode1632:
            break;
        default:
            return FALSE;
        }
    }
    return TRUE;
}
#endif

75 76
static BOOL i386_get_addr(HANDLE hThread, const CONTEXT* ctx,
                          enum cpu_addr ca, ADDRESS64* addr)
77 78 79 80 81 82 83 84 85 86 87 88
{
#ifdef __i386__
    switch (ca)
    {
    case cpu_addr_pc:    return i386_build_addr(hThread, ctx, addr, ctx->SegCs, ctx->Eip);
    case cpu_addr_stack: return i386_build_addr(hThread, ctx, addr, ctx->SegSs, ctx->Esp);
    case cpu_addr_frame: return i386_build_addr(hThread, ctx, addr, ctx->SegSs, ctx->Ebp);
    }
#endif
    return FALSE;
}

89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116
#ifdef __i386__
/* fetch_next_frame32()
 *
 * modify (at least) context.{eip, esp, ebp} using unwind information
 * either out of debug info (dwarf, pdb), or simple stack unwind
 */
static BOOL fetch_next_frame32(struct cpu_stack_walk* csw,
                               CONTEXT* context, DWORD_PTR curr_pc)
{
    DWORD_PTR               xframe;
    struct pdb_cmd_pair     cpair[4];
    DWORD                   val32;

    if (dwarf2_virtual_unwind(csw, curr_pc, context, &xframe))
    {
        context->Esp = xframe;
        return TRUE;
    }
    cpair[0].name = "$ebp";      cpair[0].pvalue = &context->Ebp;
    cpair[1].name = "$esp";      cpair[1].pvalue = &context->Esp;
    cpair[2].name = "$eip";      cpair[2].pvalue = &context->Eip;
    cpair[3].name = NULL;        cpair[3].pvalue = NULL;

    if (!pdb_virtual_unwind(csw, curr_pc, context, cpair))
    {
        /* do a simple unwind using ebp
         * we assume a "regular" prologue in the function has been used
         */
117
        if (!context->Ebp) return FALSE;
118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
        context->Esp = context->Ebp + 2 * sizeof(DWORD);
        if (!sw_read_mem(csw, context->Ebp + sizeof(DWORD), &val32, sizeof(DWORD)))
        {
            WARN("Cannot read new frame offset %p\n",
                 (void*)(DWORD_PTR)(context->Ebp + (int)sizeof(DWORD)));
            return FALSE;
        }
        context->Eip = val32;
        /* "pop up" previous EBP value */
        if (!sw_read_mem(csw, context->Ebp, &val32, sizeof(DWORD)))
            return FALSE;
        context->Ebp = val32;
    }
    return TRUE;
}
#endif

135 136 137
enum st_mode {stm_start, stm_32bit, stm_16bit, stm_done};

/* indexes in Reserved array */
138 139 140
#define __CurrentModeCount      0
#define __CurrentSwitch         1
#define __NextSwitch            2
141

142 143
#define curr_mode   (frame->Reserved[__CurrentModeCount] & 0x0F)
#define curr_count  (frame->Reserved[__CurrentModeCount] >> 4)
144 145 146
#define curr_switch (frame->Reserved[__CurrentSwitch])
#define next_switch (frame->Reserved[__NextSwitch])

147 148 149
#define set_curr_mode(m) {frame->Reserved[__CurrentModeCount] &= ~0x0F; frame->Reserved[__CurrentModeCount] |= (m & 0x0F);}
#define inc_curr_count() (frame->Reserved[__CurrentModeCount] += 0x10)

150
static BOOL i386_stack_walk(struct cpu_stack_walk* csw, LPSTACKFRAME64 frame, CONTEXT* context)
151 152 153 154 155 156
{
    STACK32FRAME        frame32;
    STACK16FRAME        frame16;
    char                ch;
    ADDRESS64           tmp;
    DWORD               p;
157 158
    WORD                val16;
    DWORD               val32;
159
    BOOL                do_switch;
160
#ifdef __i386__
161
    unsigned            deltapc;
162 163
    CONTEXT             _context;
#endif
164 165 166 167

    /* sanity check */
    if (curr_mode >= stm_done) return FALSE;

168
    TRACE("Enter: PC=%s Frame=%s Return=%s Stack=%s Mode=%s Count=%s cSwitch=%p nSwitch=%p\n",
169 170 171 172 173
          wine_dbgstr_addr(&frame->AddrPC),
          wine_dbgstr_addr(&frame->AddrFrame),
          wine_dbgstr_addr(&frame->AddrReturn),
          wine_dbgstr_addr(&frame->AddrStack),
          curr_mode == stm_start ? "start" : (curr_mode == stm_16bit ? "16bit" : "32bit"),
174
          wine_dbgstr_longlong(curr_count),
175 176
          (void*)(DWORD_PTR)curr_switch, (void*)(DWORD_PTR)next_switch);

177
#ifdef __i386__
178 179 180 181 182 183 184 185 186 187
    /* if we're at first call (which doesn't actually unwind, it just computes ReturnPC,
     * or if we're doing the first real unwind (count == 1), then we can directly use
     * eip. otherwise, eip is *after* the insn that actually made the call to
     * previous frame, so decrease eip by delta pc (1!) so that we're inside previous
     * insn.
     * Doing so, we ensure that the pc used for unwinding is always inside the function
     * we want to use for next frame
     */
    deltapc = curr_count <= 1 ? 0 : 1;

188 189 190 191 192 193 194 195 196 197 198 199 200 201
    if (!context)
    {
        /* setup a pseudo context for the rest of the code (esp. unwinding) */
        context = &_context;
        memset(context, 0, sizeof(*context));
        context->ContextFlags = CONTEXT_CONTROL | CONTEXT_SEGMENTS;
        if (frame->AddrPC.Mode != AddrModeFlat)    context->SegCs = frame->AddrPC.Segment;
        context->Eip = frame->AddrPC.Offset;
        if (frame->AddrFrame.Mode != AddrModeFlat) context->SegSs = frame->AddrFrame.Segment;
        context->Ebp = frame->AddrFrame.Offset;
        if (frame->AddrStack.Mode != AddrModeFlat) context->SegSs = frame->AddrStack.Segment;
        context->Esp = frame->AddrStack.Offset;
    }
#endif
202 203 204 205 206 207 208 209 210 211 212 213
    if (curr_mode == stm_start)
    {
        THREAD_BASIC_INFORMATION info;

        if ((frame->AddrPC.Mode == AddrModeFlat) &&
            (frame->AddrFrame.Mode != AddrModeFlat))
        {
            WARN("Bad AddrPC.Mode / AddrFrame.Mode combination\n");
            goto done_err;
        }

        /* Init done */
214
        set_curr_mode((frame->AddrPC.Mode == AddrModeFlat) ? stm_32bit : stm_16bit);
215 216 217 218 219 220 221

        /* cur_switch holds address of WOW32Reserved field in TEB in debuggee
         * address space
         */
        if (NtQueryInformationThread(csw->hThread, ThreadBasicInformation, &info,
                                     sizeof(info), NULL) == STATUS_SUCCESS)
        {
222
            curr_switch = (DWORD_PTR)info.TebBaseAddress + FIELD_OFFSET(TEB, WOW32Reserved);
223 224 225 226 227 228
            if (!sw_read_mem(csw, curr_switch, &p, sizeof(p)))
            {
                WARN("Can't read TEB:WOW32Reserved\n");
                goto done_err;
            }
            next_switch = p;
229 230 231 232 233
            if (!next_switch)  /* no 16-bit stack */
            {
                curr_switch = 0;
            }
            else if (curr_mode == stm_16bit)
234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263
            {
                if (!sw_read_mem(csw, next_switch, &frame32, sizeof(frame32)))
                {
                    WARN("Bad stack frame %p\n", (void*)(DWORD_PTR)next_switch);
                    goto done_err;
                }
                curr_switch = (DWORD)frame32.frame16;
                tmp.Mode    = AddrMode1616;
                tmp.Segment = SELECTOROF(curr_switch);
                tmp.Offset  = OFFSETOF(curr_switch);
                if (!sw_read_mem(csw, sw_xlat_addr(csw, &tmp), &ch, sizeof(ch)))
                    curr_switch = 0xFFFFFFFF;
            }
            else
            {
                tmp.Mode    = AddrMode1616;
                tmp.Segment = SELECTOROF(next_switch);
                tmp.Offset  = OFFSETOF(next_switch);
                p = sw_xlat_addr(csw, &tmp);
                if (!sw_read_mem(csw, p, &frame16, sizeof(frame16)))
                {
                    WARN("Bad stack frame 0x%08x\n", p);
                    goto done_err;
                }
                curr_switch = (DWORD_PTR)frame16.frame32;
                if (!sw_read_mem(csw, curr_switch, &ch, sizeof(ch)))
                    curr_switch = 0xFFFFFFFF;
            }
        }
        else
264
            /* FIXME: this will allow it to work when we're not attached to a live target,
265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316
             * but the 16 <=> 32 switch facility won't be available.
             */
            curr_switch = 0;
        frame->AddrReturn.Mode = frame->AddrStack.Mode = (curr_mode == stm_16bit) ? AddrMode1616 : AddrModeFlat;
        /* don't set up AddrStack on first call. Either the caller has set it up, or
         * we will get it in the next frame
         */
        memset(&frame->AddrBStore, 0, sizeof(frame->AddrBStore));
    }
    else
    {
        if (frame->AddrFrame.Mode == AddrModeFlat)
        {
            assert(curr_mode == stm_32bit);
            do_switch = curr_switch && frame->AddrFrame.Offset >= curr_switch;
        }
        else
        {
            assert(curr_mode == stm_16bit);
            do_switch = curr_switch &&
                frame->AddrFrame.Segment == SELECTOROF(curr_switch) &&
                frame->AddrFrame.Offset >= OFFSETOF(curr_switch);
        }

        if (do_switch)
        {
            if (curr_mode == stm_16bit)
            {
                if (!sw_read_mem(csw, next_switch, &frame32, sizeof(frame32)))
                {
                    WARN("Bad stack frame %p\n", (void*)(DWORD_PTR)next_switch);
                    goto done_err;
                }

                frame->AddrPC.Mode        = AddrModeFlat;
                frame->AddrPC.Segment     = 0;
                frame->AddrPC.Offset      = frame32.retaddr;
                frame->AddrFrame.Mode     = AddrModeFlat;
                frame->AddrFrame.Segment  = 0;
                frame->AddrFrame.Offset   = frame32.ebp;

                frame->AddrStack.Mode     = AddrModeFlat;
                frame->AddrStack.Segment  = 0;
                frame->AddrReturn.Mode    = AddrModeFlat;
                frame->AddrReturn.Segment = 0;

                next_switch = curr_switch;
                tmp.Mode    = AddrMode1616;
                tmp.Segment = SELECTOROF(next_switch);
                tmp.Offset  = OFFSETOF(next_switch);
                p = sw_xlat_addr(csw, &tmp);

317
                if (!sw_read_mem(csw, p, &frame16, sizeof(frame16)))
318 319 320 321 322
                {
                    WARN("Bad stack frame 0x%08x\n", p);
                    goto done_err;
                }
                curr_switch = (DWORD_PTR)frame16.frame32;
323
                set_curr_mode(stm_32bit);
324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340
                if (!sw_read_mem(csw, curr_switch, &ch, sizeof(ch)))
                    curr_switch = 0;
            }
            else
            {
                tmp.Mode    = AddrMode1616;
                tmp.Segment = SELECTOROF(next_switch);
                tmp.Offset  = OFFSETOF(next_switch);
                p = sw_xlat_addr(csw, &tmp);

                if (!sw_read_mem(csw, p, &frame16, sizeof(frame16)))
                {
                    WARN("Bad stack frame 0x%08x\n", p);
                    goto done_err;
                }

                TRACE("Got a 16 bit stack switch:"
341
                      "\n\tframe32: %p"
342 343 344 345 346
                      "\n\tedx:%08x ecx:%08x ebp:%08x"
                      "\n\tds:%04x es:%04x fs:%04x gs:%04x"
                      "\n\tcall_from_ip:%08x module_cs:%04x relay=%08x"
                      "\n\tentry_ip:%04x entry_point:%08x"
                      "\n\tbp:%04x ip:%04x cs:%04x\n",
347
                      frame16.frame32,
348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380
                      frame16.edx, frame16.ecx, frame16.ebp,
                      frame16.ds, frame16.es, frame16.fs, frame16.gs,
                      frame16.callfrom_ip, frame16.module_cs, frame16.relay,
                      frame16.entry_ip, frame16.entry_point,
                      frame16.bp, frame16.ip, frame16.cs);

                frame->AddrPC.Mode       = AddrMode1616;
                frame->AddrPC.Segment    = frame16.cs;
                frame->AddrPC.Offset     = frame16.ip;

                frame->AddrFrame.Mode    = AddrMode1616;
                frame->AddrFrame.Segment = SELECTOROF(next_switch);
                frame->AddrFrame.Offset  = frame16.bp;

                frame->AddrStack.Mode    = AddrMode1616;
                frame->AddrStack.Segment = SELECTOROF(next_switch);

                frame->AddrReturn.Mode    = AddrMode1616;
                frame->AddrReturn.Segment = frame16.cs;

                next_switch = curr_switch;
                if (!sw_read_mem(csw, next_switch, &frame32, sizeof(frame32)))
                {
                    WARN("Bad stack frame %p\n", (void*)(DWORD_PTR)next_switch);
                    goto done_err;
                }
                curr_switch = (DWORD)frame32.frame16;
                tmp.Mode    = AddrMode1616;
                tmp.Segment = SELECTOROF(curr_switch);
                tmp.Offset  = OFFSETOF(curr_switch);

                if (!sw_read_mem(csw, sw_xlat_addr(csw, &tmp), &ch, sizeof(ch)))
                    curr_switch = 0;
381
                set_curr_mode(stm_16bit);
382 383 384 385 386 387
            }
        }
        else
        {
            if (curr_mode == stm_16bit)
            {
388
                frame->AddrPC = frame->AddrReturn;
389 390
                frame->AddrStack.Offset = frame->AddrFrame.Offset + 2 * sizeof(WORD);
                /* "pop up" previous BP value */
391 392
                if (!frame->AddrFrame.Offset ||
                    !sw_read_mem(csw, sw_xlat_addr(csw, &frame->AddrFrame),
393
                                 &val16, sizeof(WORD)))
394
                    goto done_err;
395
                frame->AddrFrame.Offset = val16;
396 397 398
            }
            else
            {
399
#ifdef __i386__
400 401
                if (!fetch_next_frame32(csw, context, sw_xlat_addr(csw, &frame->AddrPC) - deltapc))
                    goto done_err;
402

403 404 405 406 407 408 409
                frame->AddrStack.Mode = frame->AddrFrame.Mode = frame->AddrPC.Mode = AddrModeFlat;
                frame->AddrStack.Offset = context->Esp;
                frame->AddrFrame.Offset = context->Ebp;
                if (frame->AddrReturn.Offset != context->Eip)
                    FIXME("new PC=%s different from Eip=%x\n",
                          wine_dbgstr_longlong(frame->AddrReturn.Offset), context->Eip);
                frame->AddrPC.Offset = context->Eip;
410
#endif
411 412 413 414 415 416 417 418 419
            }
        }
    }

    if (curr_mode == stm_16bit)
    {
        unsigned int     i;

        p = sw_xlat_addr(csw, &frame->AddrFrame);
420
        if (!sw_read_mem(csw, p + sizeof(WORD), &val16, sizeof(WORD)))
421
            goto done_err;
422
        frame->AddrReturn.Offset = val16;
423
        /* get potential cs if a far call was used */
424
        if (!sw_read_mem(csw, p + 2 * sizeof(WORD), &val16, sizeof(WORD)))
425 426
            goto done_err;
        if (frame->AddrFrame.Offset & 1)
427
            frame->AddrReturn.Segment = val16; /* far call assumed */
428 429 430 431 432
        else
        {
            /* not explicitly marked as far call,
             * but check whether it could be anyway
             */
433
            if ((val16 & 7) == 7 && val16 != frame->AddrReturn.Segment)
434 435 436
            {
                LDT_ENTRY	le;

437
                if (GetThreadSelectorEntry(csw->hThread, val16, &le) &&
438 439 440 441 442
                    (le.HighWord.Bits.Type & 0x08)) /* code segment */
                {
                    /* it is very uncommon to push a code segment cs as
                     * a parameter, so this should work in most cases
                     */
443
                    frame->AddrReturn.Segment = val16;
444 445 446 447 448 449 450 451 452 453
                }
	    }
	}
        frame->AddrFrame.Offset &= ~1;
        /* we "pop" parameters as 16 bit entities... of course, this won't
         * work if the parameter is in fact bigger than 16bit, but
         * there's no way to know that here
         */
        for (i = 0; i < sizeof(frame->Params) / sizeof(frame->Params[0]); i++)
        {
454 455
            sw_read_mem(csw, p + (2 + i) * sizeof(WORD), &val16, sizeof(val16));
            frame->Params[i] = val16;
456
        }
457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472
#ifdef __i386__
        if (context)
        {
#define SET(field, seg, reg) \
            switch (frame->field.Mode) \
            { \
            case AddrModeFlat: context->reg = frame->field.Offset; break; \
            case AddrMode1616: context->seg = frame->field.Segment; context->reg = frame->field.Offset; break; \
            default: assert(0); \
            }
            SET(AddrStack,  SegSs, Esp);
            SET(AddrFrame,  SegSs, Ebp);
            SET(AddrReturn, SegCs, Eip);
#undef SET
        }
#endif
473 474 475
    }
    else
    {
476 477 478 479 480
        unsigned int    i;
#ifdef __i386__
        CONTEXT         newctx = *context;

        if (!fetch_next_frame32(csw, &newctx, frame->AddrPC.Offset - deltapc))
481
            goto done_err;
482 483 484
        frame->AddrReturn.Mode = AddrModeFlat;
        frame->AddrReturn.Offset = newctx.Eip;
#endif
485 486 487 488 489
        for (i = 0; i < sizeof(frame->Params) / sizeof(frame->Params[0]); i++)
        {
            sw_read_mem(csw, frame->AddrFrame.Offset + (2 + i) * sizeof(DWORD), &val32, sizeof(val32));
            frame->Params[i] = val32;
        }
490 491 492 493 494 495 496 497 498 499
    }

    frame->Far = TRUE;
    frame->Virtual = TRUE;
    p = sw_xlat_addr(csw, &frame->AddrPC);
    if (p && sw_module_base(csw, p))
        frame->FuncTableEntry = sw_table_access(csw, p);
    else
        frame->FuncTableEntry = NULL;

500 501
    inc_curr_count();
    TRACE("Leave: PC=%s Frame=%s Return=%s Stack=%s Mode=%s Count=%s cSwitch=%p nSwitch=%p FuncTable=%p\n",
502 503 504 505 506
          wine_dbgstr_addr(&frame->AddrPC),
          wine_dbgstr_addr(&frame->AddrFrame),
          wine_dbgstr_addr(&frame->AddrReturn),
          wine_dbgstr_addr(&frame->AddrStack),
          curr_mode == stm_start ? "start" : (curr_mode == stm_16bit ? "16bit" : "32bit"),
507
          wine_dbgstr_longlong(curr_count),
508 509 510 511
          (void*)(DWORD_PTR)curr_switch, (void*)(DWORD_PTR)next_switch, frame->FuncTableEntry);

    return TRUE;
done_err:
512
    set_curr_mode(stm_done);
513 514 515
    return FALSE;
}

516
static unsigned i386_map_dwarf_register(unsigned regno, BOOL eh_frame)
517 518 519 520 521 522 523 524 525
{
    unsigned    reg;

    switch (regno)
    {
    case  0: reg = CV_REG_EAX; break;
    case  1: reg = CV_REG_ECX; break;
    case  2: reg = CV_REG_EDX; break;
    case  3: reg = CV_REG_EBX; break;
526 527 528 529 530 531 532 533 534 535 536
    case  4:
    case  5:
#ifdef __APPLE__
        /* On OS X, DWARF eh_frame uses a different mapping for the registers.  It's
           apparently the mapping as emitted by GCC, at least at some point in its history. */
        if (eh_frame)
            reg = (regno == 4) ? CV_REG_EBP : CV_REG_ESP;
        else
#endif
            reg = (regno == 4) ? CV_REG_ESP : CV_REG_EBP;
        break;
537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552
    case  6: reg = CV_REG_ESI; break;
    case  7: reg = CV_REG_EDI; break;
    case  8: reg = CV_REG_EIP; break;
    case  9: reg = CV_REG_EFLAGS; break;
    case 10: reg = CV_REG_CS;  break;
    case 11: reg = CV_REG_SS;  break;
    case 12: reg = CV_REG_DS;  break;
    case 13: reg = CV_REG_ES;  break;
    case 14: reg = CV_REG_FS;  break;
    case 15: reg = CV_REG_GS;  break;
    case 16: case 17: case 18: case 19:
    case 20: case 21: case 22: case 23:
        reg = CV_REG_ST0 + regno - 16; break;
    case 24: reg = CV_REG_CTRL; break;
    case 25: reg = CV_REG_STAT; break;
    case 26: reg = CV_REG_TAG; break;
553 554 555 556
    case 27: reg = CV_REG_FPCS; break;
    case 28: reg = CV_REG_FPIP; break;
    case 29: reg = CV_REG_FPDS; break;
    case 30: reg = CV_REG_FPDO; break;
557 558 559 560 561 562 563 564 565 566 567 568 569 570
/*
reg: fop   31
*/
    case 32: case 33: case 34: case 35:
    case 36: case 37: case 38: case 39:
        reg = CV_REG_XMM0 + regno - 32; break;
    case 40: reg = CV_REG_MXCSR; break;
    default:
        FIXME("Don't know how to map register %d\n", regno);
        return 0;
    }
    return reg;
}

571 572
static void* i386_fetch_context_reg(CONTEXT* ctx, unsigned regno, unsigned* size)
{
573 574 575 576 577 578 579 580 581 582 583 584 585
#ifdef __i386__
    switch (regno)
    {
    case CV_REG_EAX: *size = sizeof(ctx->Eax); return &ctx->Eax;
    case CV_REG_EDX: *size = sizeof(ctx->Edx); return &ctx->Edx;
    case CV_REG_ECX: *size = sizeof(ctx->Ecx); return &ctx->Ecx;
    case CV_REG_EBX: *size = sizeof(ctx->Ebx); return &ctx->Ebx;
    case CV_REG_ESI: *size = sizeof(ctx->Esi); return &ctx->Esi;
    case CV_REG_EDI: *size = sizeof(ctx->Edi); return &ctx->Edi;
    case CV_REG_EBP: *size = sizeof(ctx->Ebp); return &ctx->Ebp;
    case CV_REG_ESP: *size = sizeof(ctx->Esp); return &ctx->Esp;
    case CV_REG_EIP: *size = sizeof(ctx->Eip); return &ctx->Eip;

586 587 588 589 590 591 592 593 594 595
    /* These are x87 floating point registers... They do not match a C type in
     * the Linux ABI, so hardcode their 80-bitness. */
    case CV_REG_ST0 + 0: *size = 10; return &ctx->FloatSave.RegisterArea[0*10];
    case CV_REG_ST0 + 1: *size = 10; return &ctx->FloatSave.RegisterArea[1*10];
    case CV_REG_ST0 + 2: *size = 10; return &ctx->FloatSave.RegisterArea[2*10];
    case CV_REG_ST0 + 3: *size = 10; return &ctx->FloatSave.RegisterArea[3*10];
    case CV_REG_ST0 + 4: *size = 10; return &ctx->FloatSave.RegisterArea[4*10];
    case CV_REG_ST0 + 5: *size = 10; return &ctx->FloatSave.RegisterArea[5*10];
    case CV_REG_ST0 + 6: *size = 10; return &ctx->FloatSave.RegisterArea[6*10];
    case CV_REG_ST0 + 7: *size = 10; return &ctx->FloatSave.RegisterArea[7*10];
596

597 598 599 600 601 602 603 604
    case CV_REG_CTRL: *size = sizeof(DWORD); return &ctx->FloatSave.ControlWord;
    case CV_REG_STAT: *size = sizeof(DWORD); return &ctx->FloatSave.StatusWord;
    case CV_REG_TAG:  *size = sizeof(DWORD); return &ctx->FloatSave.TagWord;
    case CV_REG_FPCS: *size = sizeof(DWORD); return &ctx->FloatSave.ErrorSelector;
    case CV_REG_FPIP: *size = sizeof(DWORD); return &ctx->FloatSave.ErrorOffset;
    case CV_REG_FPDS: *size = sizeof(DWORD); return &ctx->FloatSave.DataSelector;
    case CV_REG_FPDO: *size = sizeof(DWORD); return &ctx->FloatSave.DataOffset;

605 606 607 608 609 610 611 612 613 614 615
    case CV_REG_EFLAGS: *size = sizeof(ctx->EFlags); return &ctx->EFlags;
    case CV_REG_ES: *size = sizeof(ctx->SegEs); return &ctx->SegEs;
    case CV_REG_CS: *size = sizeof(ctx->SegCs); return &ctx->SegCs;
    case CV_REG_SS: *size = sizeof(ctx->SegSs); return &ctx->SegSs;
    case CV_REG_DS: *size = sizeof(ctx->SegDs); return &ctx->SegDs;
    case CV_REG_FS: *size = sizeof(ctx->SegFs); return &ctx->SegFs;
    case CV_REG_GS: *size = sizeof(ctx->SegGs); return &ctx->SegGs;

    }
#endif
    FIXME("Unknown register %x\n", regno);
616 617 618 619 620
    return NULL;
}

static const char* i386_fetch_regname(unsigned regno)
{
621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648
    switch (regno)
    {
    case CV_REG_EAX: return "eax";
    case CV_REG_EDX: return "edx";
    case CV_REG_ECX: return "ecx";
    case CV_REG_EBX: return "ebx";
    case CV_REG_ESI: return "esi";
    case CV_REG_EDI: return "edi";
    case CV_REG_EBP: return "ebp";
    case CV_REG_ESP: return "esp";
    case CV_REG_EIP: return "eip";

    case CV_REG_ST0 + 0: return "st0";
    case CV_REG_ST0 + 1: return "st1";
    case CV_REG_ST0 + 2: return "st2";
    case CV_REG_ST0 + 3: return "st3";
    case CV_REG_ST0 + 4: return "st4";
    case CV_REG_ST0 + 5: return "st5";
    case CV_REG_ST0 + 6: return "st6";
    case CV_REG_ST0 + 7: return "st7";

    case CV_REG_EFLAGS: return "eflags";
    case CV_REG_ES: return "es";
    case CV_REG_CS: return "cs";
    case CV_REG_SS: return "ss";
    case CV_REG_DS: return "ds";
    case CV_REG_FS: return "fs";
    case CV_REG_GS: return "gs";
649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667

    case CV_REG_CTRL: return "fpControl";
    case CV_REG_STAT: return "fpStatus";
    case CV_REG_TAG:  return "fpTag";
    case CV_REG_FPCS: return "fpCS";
    case CV_REG_FPIP: return "fpIP";
    case CV_REG_FPDS: return "fpDS";
    case CV_REG_FPDO: return "fpData";

    case CV_REG_XMM0 + 0: return "xmm0";
    case CV_REG_XMM0 + 1: return "xmm1";
    case CV_REG_XMM0 + 2: return "xmm2";
    case CV_REG_XMM0 + 3: return "xmm3";
    case CV_REG_XMM0 + 4: return "xmm4";
    case CV_REG_XMM0 + 5: return "xmm5";
    case CV_REG_XMM0 + 6: return "xmm6";
    case CV_REG_XMM0 + 7: return "xmm7";

    case CV_REG_MXCSR: return "MxCSR";
668
    }
669 670 671 672
    FIXME("Unknown register %x\n", regno);
    return NULL;
}

673 674 675 676 677 678 679 680 681 682 683 684 685 686
static BOOL i386_fetch_minidump_thread(struct dump_context* dc, unsigned index, unsigned flags, const CONTEXT* ctx)
{
    if (ctx->ContextFlags && (flags & ThreadWriteInstructionWindow))
    {
        /* FIXME: crop values across module boundaries, */
#ifdef __i386__
        ULONG base = ctx->Eip <= 0x80 ? 0 : ctx->Eip - 0x80;
        minidump_add_memory_block(dc, base, ctx->Eip + 0x80 - base, 0);
#endif
    }

    return TRUE;
}

687 688 689 690 691 692 693 694
static BOOL i386_fetch_minidump_module(struct dump_context* dc, unsigned index, unsigned flags)
{
    /* FIXME: actually, we should probably take care of FPO data, unless it's stored in
     * function table minidump stream
     */
    return FALSE;
}

695
DECLSPEC_HIDDEN struct cpu cpu_i386 = {
696
    IMAGE_FILE_MACHINE_I386,
697
    4,
698
    CV_REG_EBP,
699
    i386_get_addr,
700
    i386_stack_walk,
701
    NULL,
702
    i386_map_dwarf_register,
703 704
    i386_fetch_context_reg,
    i386_fetch_regname,
705
    i386_fetch_minidump_thread,
706
    i386_fetch_minidump_module,
707
};