sweep.c 49.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460
/*
 * SGI FREE SOFTWARE LICENSE B (Version 2.0, Sept. 18, 2008)
 * Copyright (C) 1991-2000 Silicon Graphics, Inc. All Rights Reserved.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice including the dates of first publication and
 * either this permission notice or a reference to
 * http://oss.sgi.com/projects/FreeB/
 * shall be included in all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
 * SILICON GRAPHICS, INC. BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
 * WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF
 * OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 *
 * Except as contained in this notice, the name of Silicon Graphics, Inc.
 * shall not be used in advertising or otherwise to promote the sale, use or
 * other dealings in this Software without prior written authorization from
 * Silicon Graphics, Inc.
 */
/*
** Author: Eric Veach, July 1994.
**
*/

#include <stdarg.h>
#include <assert.h>
#include <setjmp.h>		/* longjmp */
#include <limits.h>		/* LONG_MAX */

#include "windef.h"
#include "winbase.h"

#include "mesh.h"
#include "tess.h"

/* dictionary functions (used to be in dict.c) */

typedef void *DictKey;
typedef struct DictNode DictNode;

#define		dictKey(n)	((n)->key)
#define		dictSucc(n)	((n)->next)
#define		dictPred(n)	((n)->prev)
#define		dictMin(d)	((d)->head.next)
#define		dictMax(d)	((d)->head.prev)
#define		dictInsert(d,k) (dictInsertBefore((d),&(d)->head,(k)))

struct DictNode {
  DictKey	key;
  DictNode	*next;
  DictNode	*prev;
};

struct Dict {
  DictNode	head;
  void		*frame;
  int		(*leq)(void *frame, DictKey key1, DictKey key2);
};

static Dict *dictNewDict( void *frame,
                          int (*leq)(void *frame, DictKey key1, DictKey key2) )
{
  Dict *dict = HeapAlloc( GetProcessHeap(), 0, sizeof( Dict ));
  DictNode *head;

  if (dict == NULL) return NULL;

  head = &dict->head;

  head->key = NULL;
  head->next = head;
  head->prev = head;

  dict->frame = frame;
  dict->leq = leq;

  return dict;
}

static void dictDeleteDict( Dict *dict )
{
  DictNode *node, *next;

  for( node = dict->head.next; node != &dict->head; node = next ) {
    next = node->next;
    HeapFree( GetProcessHeap(), 0, node );
  }
  HeapFree( GetProcessHeap(), 0, dict );
}

static DictNode *dictInsertBefore( Dict *dict, DictNode *node, DictKey key )
{
  DictNode *newNode;

  do {
    node = node->prev;
  } while( node->key != NULL && ! (*dict->leq)(dict->frame, node->key, key));

  newNode = HeapAlloc( GetProcessHeap(), 0, sizeof( DictNode ));
  if (newNode == NULL) return NULL;

  newNode->key = key;
  newNode->next = node->next;
  node->next->prev = newNode;
  newNode->prev = node;
  node->next = newNode;

  return newNode;
}

static void dictDelete( Dict *dict, DictNode *node )
{
  node->next->prev = node->prev;
  node->prev->next = node->next;
  HeapFree( GetProcessHeap(), 0, node );
}

static DictNode *dictSearch( Dict *dict, DictKey key )
{
  DictNode *node = &dict->head;

  do {
    node = node->next;
  } while( node->key != NULL && ! (*dict->leq)(dict->frame, key, node->key));

  return node;
}


/* For each pair of adjacent edges crossing the sweep line, there is
 * an ActiveRegion to represent the region between them.  The active
 * regions are kept in sorted order in a dynamic dictionary.  As the
 * sweep line crosses each vertex, we update the affected regions.
 */

struct ActiveRegion {
  GLUhalfEdge	*eUp;		/* upper edge, directed right to left */
  DictNode	*nodeUp;	/* dictionary node corresponding to eUp */
  int		windingNumber;	/* used to determine which regions are
                                 * inside the polygon */
  GLboolean	inside;		/* is this region inside the polygon? */
  GLboolean	sentinel;	/* marks fake edges at t = +/-infinity */
  GLboolean	dirty;		/* marks regions where the upper or lower
                                 * edge has changed, but we haven't checked
                                 * whether they intersect yet */
  GLboolean	fixUpperEdge;	/* marks temporary edges introduced when
                                 * we process a "right vertex" (one without
                                 * any edges leaving to the right) */
};

#define RegionBelow(r)	((ActiveRegion *) dictKey(dictPred((r)->nodeUp)))
#define RegionAbove(r)	((ActiveRegion *) dictKey(dictSucc((r)->nodeUp)))


#define DebugEvent( tess )

/*
 * Invariants for the Edge Dictionary.
 * - each pair of adjacent edges e2=Succ(e1) satisfies EdgeLeq(e1,e2)
 *   at any valid location of the sweep event
 * - if EdgeLeq(e2,e1) as well (at any valid sweep event), then e1 and e2
 *   share a common endpoint
 * - for each e, e->Dst has been processed, but not e->Org
 * - each edge e satisfies VertLeq(e->Dst,event) && VertLeq(event,e->Org)
 *   where "event" is the current sweep line event.
 * - no edge e has zero length
 *
 * Invariants for the Mesh (the processed portion).
 * - the portion of the mesh left of the sweep line is a planar graph,
 *   ie. there is *some* way to embed it in the plane
 * - no processed edge has zero length
 * - no two processed vertices have identical coordinates
 * - each "inside" region is monotone, ie. can be broken into two chains
 *   of monotonically increasing vertices according to VertLeq(v1,v2)
 *   - a non-invariant: these chains may intersect (very slightly)
 *
 * Invariants for the Sweep.
 * - if none of the edges incident to the event vertex have an activeRegion
 *   (ie. none of these edges are in the edge dictionary), then the vertex
 *   has only right-going edges.
 * - if an edge is marked "fixUpperEdge" (it is a temporary edge introduced
 *   by ConnectRightVertex), then it is the only right-going edge from
 *   its associated vertex.  (This says that these edges exist only
 *   when it is necessary.)
 */

#undef	MAX
#undef	MIN
#define MAX(x,y)	((x) >= (y) ? (x) : (y))
#define MIN(x,y)	((x) <= (y) ? (x) : (y))

/* When we merge two edges into one, we need to compute the combined
 * winding of the new edge.
 */
#define AddWinding(eDst,eSrc)	(eDst->winding += eSrc->winding, \
                                 eDst->Sym->winding += eSrc->Sym->winding)

static void SweepEvent( GLUtesselator *tess, GLUvertex *vEvent );
static void WalkDirtyRegions( GLUtesselator *tess, ActiveRegion *regUp );
static int CheckForRightSplice( GLUtesselator *tess, ActiveRegion *regUp );

static int EdgeLeq( GLUtesselator *tess, ActiveRegion *reg1,
		    ActiveRegion *reg2 )
/*
 * Both edges must be directed from right to left (this is the canonical
 * direction for the upper edge of each region).
 *
 * The strategy is to evaluate a "t" value for each edge at the
 * current sweep line position, given by tess->event.  The calculations
 * are designed to be very stable, but of course they are not perfect.
 *
 * Special case: if both edge destinations are at the sweep event,
 * we sort the edges by slope (they would otherwise compare equally).
 */
{
  GLUvertex *event = tess->event;
  GLUhalfEdge *e1, *e2;
  GLdouble t1, t2;

  e1 = reg1->eUp;
  e2 = reg2->eUp;

  if( e1->Dst == event ) {
    if( e2->Dst == event ) {
      /* Two edges right of the sweep line which meet at the sweep event.
       * Sort them by slope.
       */
      if( VertLeq( e1->Org, e2->Org )) {
	return EdgeSign( e2->Dst, e1->Org, e2->Org ) <= 0;
      }
      return EdgeSign( e1->Dst, e2->Org, e1->Org ) >= 0;
    }
    return EdgeSign( e2->Dst, event, e2->Org ) <= 0;
  }
  if( e2->Dst == event ) {
    return EdgeSign( e1->Dst, event, e1->Org ) >= 0;
  }

  /* General case - compute signed distance *from* e1, e2 to event */
  t1 = EdgeEval( e1->Dst, event, e1->Org );
  t2 = EdgeEval( e2->Dst, event, e2->Org );
  return (t1 >= t2);
}


static void DeleteRegion( GLUtesselator *tess, ActiveRegion *reg )
{
  if( reg->fixUpperEdge ) {
    /* It was created with zero winding number, so it better be
     * deleted with zero winding number (ie. it better not get merged
     * with a real edge).
     */
    assert( reg->eUp->winding == 0 );
  }
  reg->eUp->activeRegion = NULL;
  dictDelete( tess->dict, reg->nodeUp );
  HeapFree( GetProcessHeap(), 0, reg );
}


static int FixUpperEdge( ActiveRegion *reg, GLUhalfEdge *newEdge )
/*
 * Replace an upper edge which needs fixing (see ConnectRightVertex).
 */
{
  assert( reg->fixUpperEdge );
  if ( !__gl_meshDelete( reg->eUp ) ) return 0;
  reg->fixUpperEdge = FALSE;
  reg->eUp = newEdge;
  newEdge->activeRegion = reg;

  return 1;
}

static ActiveRegion *TopLeftRegion( ActiveRegion *reg )
{
  GLUvertex *org = reg->eUp->Org;
  GLUhalfEdge *e;

  /* Find the region above the uppermost edge with the same origin */
  do {
    reg = RegionAbove( reg );
  } while( reg->eUp->Org == org );

  /* If the edge above was a temporary edge introduced by ConnectRightVertex,
   * now is the time to fix it.
   */
  if( reg->fixUpperEdge ) {
    e = __gl_meshConnect( RegionBelow(reg)->eUp->Sym, reg->eUp->Lnext );
    if (e == NULL) return NULL;
    if ( !FixUpperEdge( reg, e ) ) return NULL;
    reg = RegionAbove( reg );
  }
  return reg;
}

static ActiveRegion *TopRightRegion( ActiveRegion *reg )
{
  GLUvertex *dst = reg->eUp->Dst;

  /* Find the region above the uppermost edge with the same destination */
  do {
    reg = RegionAbove( reg );
  } while( reg->eUp->Dst == dst );
  return reg;
}

static ActiveRegion *AddRegionBelow( GLUtesselator *tess,
				     ActiveRegion *regAbove,
				     GLUhalfEdge *eNewUp )
/*
 * Add a new active region to the sweep line, *somewhere* below "regAbove"
 * (according to where the new edge belongs in the sweep-line dictionary).
 * The upper edge of the new region will be "eNewUp".
 * Winding number and "inside" flag are not updated.
 */
{
  ActiveRegion *regNew = HeapAlloc( GetProcessHeap(), 0, sizeof( ActiveRegion ));
  if (regNew == NULL) longjmp(tess->env,1);

  regNew->eUp = eNewUp;
  regNew->nodeUp = dictInsertBefore( tess->dict, regAbove->nodeUp, regNew );
  if (regNew->nodeUp == NULL) longjmp(tess->env,1);
  regNew->fixUpperEdge = FALSE;
  regNew->sentinel = FALSE;
  regNew->dirty = FALSE;

  eNewUp->activeRegion = regNew;
  return regNew;
}

static GLboolean IsWindingInside( GLUtesselator *tess, int n )
{
  switch( tess->windingRule ) {
  case GLU_TESS_WINDING_ODD:
    return (n & 1);
  case GLU_TESS_WINDING_NONZERO:
    return (n != 0);
  case GLU_TESS_WINDING_POSITIVE:
    return (n > 0);
  case GLU_TESS_WINDING_NEGATIVE:
    return (n < 0);
  case GLU_TESS_WINDING_ABS_GEQ_TWO:
    return (n >= 2) || (n <= -2);
  }
  /*LINTED*/
  assert( FALSE );
  /*NOTREACHED*/
  return GL_FALSE;  /* avoid compiler complaints */
}


static void ComputeWinding( GLUtesselator *tess, ActiveRegion *reg )
{
  reg->windingNumber = RegionAbove(reg)->windingNumber + reg->eUp->winding;
  reg->inside = IsWindingInside( tess, reg->windingNumber );
}


static void FinishRegion( GLUtesselator *tess, ActiveRegion *reg )
/*
 * Delete a region from the sweep line.  This happens when the upper
 * and lower chains of a region meet (at a vertex on the sweep line).
 * The "inside" flag is copied to the appropriate mesh face (we could
 * not do this before -- since the structure of the mesh is always
 * changing, this face may not have even existed until now).
 */
{
  GLUhalfEdge *e = reg->eUp;
  GLUface *f = e->Lface;

  f->inside = reg->inside;
  f->anEdge = e;   /* optimization for __gl_meshTessellateMonoRegion() */
  DeleteRegion( tess, reg );
}


static GLUhalfEdge *FinishLeftRegions( GLUtesselator *tess,
	       ActiveRegion *regFirst, ActiveRegion *regLast )
/*
 * We are given a vertex with one or more left-going edges.  All affected
 * edges should be in the edge dictionary.  Starting at regFirst->eUp,
 * we walk down deleting all regions where both edges have the same
 * origin vOrg.  At the same time we copy the "inside" flag from the
 * active region to the face, since at this point each face will belong
 * to at most one region (this was not necessarily true until this point
 * in the sweep).  The walk stops at the region above regLast; if regLast
 * is NULL we walk as far as possible.	At the same time we relink the
 * mesh if necessary, so that the ordering of edges around vOrg is the
 * same as in the dictionary.
 */
{
  ActiveRegion *reg, *regPrev;
  GLUhalfEdge *e, *ePrev;

  regPrev = regFirst;
  ePrev = regFirst->eUp;
  while( regPrev != regLast ) {
    regPrev->fixUpperEdge = FALSE;	/* placement was OK */
    reg = RegionBelow( regPrev );
    e = reg->eUp;
    if( e->Org != ePrev->Org ) {
      if( ! reg->fixUpperEdge ) {
	/* Remove the last left-going edge.  Even though there are no further
	 * edges in the dictionary with this origin, there may be further
	 * such edges in the mesh (if we are adding left edges to a vertex
	 * that has already been processed).  Thus it is important to call
	 * FinishRegion rather than just DeleteRegion.
	 */
	FinishRegion( tess, regPrev );
	break;
      }
      /* If the edge below was a temporary edge introduced by
       * ConnectRightVertex, now is the time to fix it.
       */
      e = __gl_meshConnect( ePrev->Lprev, e->Sym );
      if (e == NULL) longjmp(tess->env,1);
      if ( !FixUpperEdge( reg, e ) ) longjmp(tess->env,1);
    }

    /* Relink edges so that ePrev->Onext == e */
    if( ePrev->Onext != e ) {
      if ( !__gl_meshSplice( e->Oprev, e ) ) longjmp(tess->env,1);
      if ( !__gl_meshSplice( ePrev, e ) ) longjmp(tess->env,1);
    }
    FinishRegion( tess, regPrev );	/* may change reg->eUp */
    ePrev = reg->eUp;
    regPrev = reg;
  }
  return ePrev;
}


static void AddRightEdges( GLUtesselator *tess, ActiveRegion *regUp,
       GLUhalfEdge *eFirst, GLUhalfEdge *eLast, GLUhalfEdge *eTopLeft,
       GLboolean cleanUp )
/*
 * Purpose: insert right-going edges into the edge dictionary, and update
 * winding numbers and mesh connectivity appropriately.  All right-going
 * edges share a common origin vOrg.  Edges are inserted CCW starting at
 * eFirst; the last edge inserted is eLast->Oprev.  If vOrg has any
 * left-going edges already processed, then eTopLeft must be the edge
 * such that an imaginary upward vertical segment from vOrg would be
 * contained between eTopLeft->Oprev and eTopLeft; otherwise eTopLeft
 * should be NULL.
 */
{
  ActiveRegion *reg, *regPrev;
  GLUhalfEdge *e, *ePrev;
  int firstTime = TRUE;

  /* Insert the new right-going edges in the dictionary */
  e = eFirst;
  do {
    assert( VertLeq( e->Org, e->Dst ));
    AddRegionBelow( tess, regUp, e->Sym );
    e = e->Onext;
  } while ( e != eLast );

  /* Walk *all* right-going edges from e->Org, in the dictionary order,
   * updating the winding numbers of each region, and re-linking the mesh
   * edges to match the dictionary ordering (if necessary).
   */
  if( eTopLeft == NULL ) {
    eTopLeft = RegionBelow( regUp )->eUp->Rprev;
  }
  regPrev = regUp;
  ePrev = eTopLeft;
  for( ;; ) {
    reg = RegionBelow( regPrev );
    e = reg->eUp->Sym;
    if( e->Org != ePrev->Org ) break;

    if( e->Onext != ePrev ) {
      /* Unlink e from its current position, and relink below ePrev */
      if ( !__gl_meshSplice( e->Oprev, e ) ) longjmp(tess->env,1);
      if ( !__gl_meshSplice( ePrev->Oprev, e ) ) longjmp(tess->env,1);
    }
    /* Compute the winding number and "inside" flag for the new regions */
    reg->windingNumber = regPrev->windingNumber - e->winding;
    reg->inside = IsWindingInside( tess, reg->windingNumber );

    /* Check for two outgoing edges with same slope -- process these
     * before any intersection tests (see example in __gl_computeInterior).
     */
    regPrev->dirty = TRUE;
    if( ! firstTime && CheckForRightSplice( tess, regPrev )) {
      AddWinding( e, ePrev );
      DeleteRegion( tess, regPrev );
      if ( !__gl_meshDelete( ePrev ) ) longjmp(tess->env,1);
    }
    firstTime = FALSE;
    regPrev = reg;
    ePrev = e;
  }
  regPrev->dirty = TRUE;
  assert( regPrev->windingNumber - e->winding == reg->windingNumber );

  if( cleanUp ) {
    /* Check for intersections between newly adjacent edges. */
    WalkDirtyRegions( tess, regPrev );
  }
}


static void CallCombine( GLUtesselator *tess, GLUvertex *isect,
			 void *data[4], GLfloat weights[4], int needed )
{
  GLdouble coords[3];

  /* Copy coord data in case the callback changes it. */
  coords[0] = isect->coords[0];
  coords[1] = isect->coords[1];
  coords[2] = isect->coords[2];

  isect->data = NULL;
  CALL_COMBINE_OR_COMBINE_DATA( coords, data, weights, &isect->data );
  if( isect->data == NULL ) {
    if( ! needed ) {
      isect->data = data[0];
    } else if( ! tess->fatalError ) {
      /* The only way fatal error is when two edges are found to intersect,
       * but the user has not provided the callback necessary to handle
       * generated intersection points.
       */
      CALL_ERROR_OR_ERROR_DATA( GLU_TESS_NEED_COMBINE_CALLBACK );
      tess->fatalError = TRUE;
    }
  }
}

static void SpliceMergeVertices( GLUtesselator *tess, GLUhalfEdge *e1,
				 GLUhalfEdge *e2 )
/*
 * Two vertices with idential coordinates are combined into one.
 * e1->Org is kept, while e2->Org is discarded.
 */
{
  void *data[4] = { NULL, NULL, NULL, NULL };
  GLfloat weights[4] = { 0.5, 0.5, 0.0, 0.0 };

  data[0] = e1->Org->data;
  data[1] = e2->Org->data;
  CallCombine( tess, e1->Org, data, weights, FALSE );
  if ( !__gl_meshSplice( e1, e2 ) ) longjmp(tess->env,1);
}

static void VertexWeights( GLUvertex *isect, GLUvertex *org, GLUvertex *dst,
			   GLfloat *weights )
/*
 * Find some weights which describe how the intersection vertex is
 * a linear combination of "org" and "dest".  Each of the two edges
 * which generated "isect" is allocated 50% of the weight; each edge
 * splits the weight between its org and dst according to the
 * relative distance to "isect".
 */
{
  GLdouble t1 = VertL1dist( org, isect );
  GLdouble t2 = VertL1dist( dst, isect );

  weights[0] = 0.5 * t2 / (t1 + t2);
  weights[1] = 0.5 * t1 / (t1 + t2);
  isect->coords[0] += weights[0]*org->coords[0] + weights[1]*dst->coords[0];
  isect->coords[1] += weights[0]*org->coords[1] + weights[1]*dst->coords[1];
  isect->coords[2] += weights[0]*org->coords[2] + weights[1]*dst->coords[2];
}


static void GetIntersectData( GLUtesselator *tess, GLUvertex *isect,
       GLUvertex *orgUp, GLUvertex *dstUp,
       GLUvertex *orgLo, GLUvertex *dstLo )
/*
 * We've computed a new intersection point, now we need a "data" pointer
 * from the user so that we can refer to this new vertex in the
 * rendering callbacks.
 */
{
  void *data[4];
  GLfloat weights[4];

  data[0] = orgUp->data;
  data[1] = dstUp->data;
  data[2] = orgLo->data;
  data[3] = dstLo->data;

  isect->coords[0] = isect->coords[1] = isect->coords[2] = 0;
  VertexWeights( isect, orgUp, dstUp, &weights[0] );
  VertexWeights( isect, orgLo, dstLo, &weights[2] );

  CallCombine( tess, isect, data, weights, TRUE );
}

static int CheckForRightSplice( GLUtesselator *tess, ActiveRegion *regUp )
/*
 * Check the upper and lower edge of "regUp", to make sure that the
 * eUp->Org is above eLo, or eLo->Org is below eUp (depending on which
 * origin is leftmost).
 *
 * The main purpose is to splice right-going edges with the same
 * dest vertex and nearly identical slopes (ie. we can't distinguish
 * the slopes numerically).  However the splicing can also help us
 * to recover from numerical errors.  For example, suppose at one
 * point we checked eUp and eLo, and decided that eUp->Org is barely
 * above eLo.  Then later, we split eLo into two edges (eg. from
 * a splice operation like this one).  This can change the result of
 * our test so that now eUp->Org is incident to eLo, or barely below it.
 * We must correct this condition to maintain the dictionary invariants.
 *
 * One possibility is to check these edges for intersection again
 * (ie. CheckForIntersect).  This is what we do if possible.  However
 * CheckForIntersect requires that tess->event lies between eUp and eLo,
 * so that it has something to fall back on when the intersection
 * calculation gives us an unusable answer.  So, for those cases where
 * we can't check for intersection, this routine fixes the problem
 * by just splicing the offending vertex into the other edge.
 * This is a guaranteed solution, no matter how degenerate things get.
 * Basically this is a combinatorial solution to a numerical problem.
 */
{
  ActiveRegion *regLo = RegionBelow(regUp);
  GLUhalfEdge *eUp = regUp->eUp;
  GLUhalfEdge *eLo = regLo->eUp;

  if( VertLeq( eUp->Org, eLo->Org )) {
    if( EdgeSign( eLo->Dst, eUp->Org, eLo->Org ) > 0 ) return FALSE;

    /* eUp->Org appears to be below eLo */
    if( ! VertEq( eUp->Org, eLo->Org )) {
      /* Splice eUp->Org into eLo */
      if ( __gl_meshSplitEdge( eLo->Sym ) == NULL) longjmp(tess->env,1);
      if ( !__gl_meshSplice( eUp, eLo->Oprev ) ) longjmp(tess->env,1);
      regUp->dirty = regLo->dirty = TRUE;

    } else if( eUp->Org != eLo->Org ) {
      /* merge the two vertices, discarding eUp->Org */
      __gl_pqSortDelete( tess->pq, eUp->Org->pqHandle );
      SpliceMergeVertices( tess, eLo->Oprev, eUp );
    }
  } else {
    if( EdgeSign( eUp->Dst, eLo->Org, eUp->Org ) < 0 ) return FALSE;

    /* eLo->Org appears to be above eUp, so splice eLo->Org into eUp */
    RegionAbove(regUp)->dirty = regUp->dirty = TRUE;
    if (__gl_meshSplitEdge( eUp->Sym ) == NULL) longjmp(tess->env,1);
    if ( !__gl_meshSplice( eLo->Oprev, eUp ) ) longjmp(tess->env,1);
  }
  return TRUE;
}

static int CheckForLeftSplice( GLUtesselator *tess, ActiveRegion *regUp )
/*
 * Check the upper and lower edge of "regUp", to make sure that the
 * eUp->Dst is above eLo, or eLo->Dst is below eUp (depending on which
 * destination is rightmost).
 *
 * Theoretically, this should always be true.  However, splitting an edge
 * into two pieces can change the results of previous tests.  For example,
 * suppose at one point we checked eUp and eLo, and decided that eUp->Dst
 * is barely above eLo.  Then later, we split eLo into two edges (eg. from
 * a splice operation like this one).  This can change the result of
 * the test so that now eUp->Dst is incident to eLo, or barely below it.
 * We must correct this condition to maintain the dictionary invariants
 * (otherwise new edges might get inserted in the wrong place in the
 * dictionary, and bad stuff will happen).
 *
 * We fix the problem by just splicing the offending vertex into the
 * other edge.
 */
{
  ActiveRegion *regLo = RegionBelow(regUp);
  GLUhalfEdge *eUp = regUp->eUp;
  GLUhalfEdge *eLo = regLo->eUp;
  GLUhalfEdge *e;

  assert( ! VertEq( eUp->Dst, eLo->Dst ));

  if( VertLeq( eUp->Dst, eLo->Dst )) {
    if( EdgeSign( eUp->Dst, eLo->Dst, eUp->Org ) < 0 ) return FALSE;

    /* eLo->Dst is above eUp, so splice eLo->Dst into eUp */
    RegionAbove(regUp)->dirty = regUp->dirty = TRUE;
    e = __gl_meshSplitEdge( eUp );
    if (e == NULL) longjmp(tess->env,1);
    if ( !__gl_meshSplice( eLo->Sym, e ) ) longjmp(tess->env,1);
    e->Lface->inside = regUp->inside;
  } else {
    if( EdgeSign( eLo->Dst, eUp->Dst, eLo->Org ) > 0 ) return FALSE;

    /* eUp->Dst is below eLo, so splice eUp->Dst into eLo */
    regUp->dirty = regLo->dirty = TRUE;
    e = __gl_meshSplitEdge( eLo );
    if (e == NULL) longjmp(tess->env,1);
    if ( !__gl_meshSplice( eUp->Lnext, eLo->Sym ) ) longjmp(tess->env,1);
    e->Rface->inside = regUp->inside;
  }
  return TRUE;
}


static int CheckForIntersect( GLUtesselator *tess, ActiveRegion *regUp )
/*
 * Check the upper and lower edges of the given region to see if
 * they intersect.  If so, create the intersection and add it
 * to the data structures.
 *
 * Returns TRUE if adding the new intersection resulted in a recursive
 * call to AddRightEdges(); in this case all "dirty" regions have been
 * checked for intersections, and possibly regUp has been deleted.
 */
{
  ActiveRegion *regLo = RegionBelow(regUp);
  GLUhalfEdge *eUp = regUp->eUp;
  GLUhalfEdge *eLo = regLo->eUp;
  GLUvertex *orgUp = eUp->Org;
  GLUvertex *orgLo = eLo->Org;
  GLUvertex *dstUp = eUp->Dst;
  GLUvertex *dstLo = eLo->Dst;
  GLdouble tMinUp, tMaxLo;
  GLUvertex isect, *orgMin;
  GLUhalfEdge *e;

  assert( ! VertEq( dstLo, dstUp ));
  assert( EdgeSign( dstUp, tess->event, orgUp ) <= 0 );
  assert( EdgeSign( dstLo, tess->event, orgLo ) >= 0 );
  assert( orgUp != tess->event && orgLo != tess->event );
  assert( ! regUp->fixUpperEdge && ! regLo->fixUpperEdge );

  if( orgUp == orgLo ) return FALSE;	/* right endpoints are the same */

  tMinUp = MIN( orgUp->t, dstUp->t );
  tMaxLo = MAX( orgLo->t, dstLo->t );
  if( tMinUp > tMaxLo ) return FALSE;	/* t ranges do not overlap */

  if( VertLeq( orgUp, orgLo )) {
    if( EdgeSign( dstLo, orgUp, orgLo ) > 0 ) return FALSE;
  } else {
    if( EdgeSign( dstUp, orgLo, orgUp ) < 0 ) return FALSE;
  }

  /* At this point the edges intersect, at least marginally */
  DebugEvent( tess );

  __gl_edgeIntersect( dstUp, orgUp, dstLo, orgLo, &isect );
  /* The following properties are guaranteed: */
  assert( MIN( orgUp->t, dstUp->t ) <= isect.t );
  assert( isect.t <= MAX( orgLo->t, dstLo->t ));
  assert( MIN( dstLo->s, dstUp->s ) <= isect.s );
  assert( isect.s <= MAX( orgLo->s, orgUp->s ));

  if( VertLeq( &isect, tess->event )) {
    /* The intersection point lies slightly to the left of the sweep line,
     * so move it until it''s slightly to the right of the sweep line.
     * (If we had perfect numerical precision, this would never happen
     * in the first place).  The easiest and safest thing to do is
     * replace the intersection by tess->event.
     */
    isect.s = tess->event->s;
    isect.t = tess->event->t;
  }
  /* Similarly, if the computed intersection lies to the right of the
   * rightmost origin (which should rarely happen), it can cause
   * unbelievable inefficiency on sufficiently degenerate inputs.
   * (If you have the test program, try running test54.d with the
   * "X zoom" option turned on).
   */
  orgMin = VertLeq( orgUp, orgLo ) ? orgUp : orgLo;
  if( VertLeq( orgMin, &isect )) {
    isect.s = orgMin->s;
    isect.t = orgMin->t;
  }

  if( VertEq( &isect, orgUp ) || VertEq( &isect, orgLo )) {
    /* Easy case -- intersection at one of the right endpoints */
    (void) CheckForRightSplice( tess, regUp );
    return FALSE;
  }

  if(	 (! VertEq( dstUp, tess->event )
	  && EdgeSign( dstUp, tess->event, &isect ) >= 0)
      || (! VertEq( dstLo, tess->event )
	  && EdgeSign( dstLo, tess->event, &isect ) <= 0 ))
  {
    /* Very unusual -- the new upper or lower edge would pass on the
     * wrong side of the sweep event, or through it.  This can happen
     * due to very small numerical errors in the intersection calculation.
     */
    if( dstLo == tess->event ) {
      /* Splice dstLo into eUp, and process the new region(s) */
      if (__gl_meshSplitEdge( eUp->Sym ) == NULL) longjmp(tess->env,1);
      if ( !__gl_meshSplice( eLo->Sym, eUp ) ) longjmp(tess->env,1);
      regUp = TopLeftRegion( regUp );
      if (regUp == NULL) longjmp(tess->env,1);
      eUp = RegionBelow(regUp)->eUp;
      FinishLeftRegions( tess, RegionBelow(regUp), regLo );
      AddRightEdges( tess, regUp, eUp->Oprev, eUp, eUp, TRUE );
      return TRUE;
    }
    if( dstUp == tess->event ) {
      /* Splice dstUp into eLo, and process the new region(s) */
      if (__gl_meshSplitEdge( eLo->Sym ) == NULL) longjmp(tess->env,1);
      if ( !__gl_meshSplice( eUp->Lnext, eLo->Oprev ) ) longjmp(tess->env,1);
      regLo = regUp;
      regUp = TopRightRegion( regUp );
      e = RegionBelow(regUp)->eUp->Rprev;
      regLo->eUp = eLo->Oprev;
      eLo = FinishLeftRegions( tess, regLo, NULL );
      AddRightEdges( tess, regUp, eLo->Onext, eUp->Rprev, e, TRUE );
      return TRUE;
    }
    /* Special case: called from ConnectRightVertex.  If either
     * edge passes on the wrong side of tess->event, split it
     * (and wait for ConnectRightVertex to splice it appropriately).
     */
    if( EdgeSign( dstUp, tess->event, &isect ) >= 0 ) {
      RegionAbove(regUp)->dirty = regUp->dirty = TRUE;
      if (__gl_meshSplitEdge( eUp->Sym ) == NULL) longjmp(tess->env,1);
      eUp->Org->s = tess->event->s;
      eUp->Org->t = tess->event->t;
    }
    if( EdgeSign( dstLo, tess->event, &isect ) <= 0 ) {
      regUp->dirty = regLo->dirty = TRUE;
      if (__gl_meshSplitEdge( eLo->Sym ) == NULL) longjmp(tess->env,1);
      eLo->Org->s = tess->event->s;
      eLo->Org->t = tess->event->t;
    }
    /* leave the rest for ConnectRightVertex */
    return FALSE;
  }

  /* General case -- split both edges, splice into new vertex.
   * When we do the splice operation, the order of the arguments is
   * arbitrary as far as correctness goes.  However, when the operation
   * creates a new face, the work done is proportional to the size of
   * the new face.  We expect the faces in the processed part of
   * the mesh (ie. eUp->Lface) to be smaller than the faces in the
   * unprocessed original contours (which will be eLo->Oprev->Lface).
   */
  if (__gl_meshSplitEdge( eUp->Sym ) == NULL) longjmp(tess->env,1);
  if (__gl_meshSplitEdge( eLo->Sym ) == NULL) longjmp(tess->env,1);
  if ( !__gl_meshSplice( eLo->Oprev, eUp ) ) longjmp(tess->env,1);
  eUp->Org->s = isect.s;
  eUp->Org->t = isect.t;
  eUp->Org->pqHandle = __gl_pqSortInsert( tess->pq, eUp->Org );
  if (eUp->Org->pqHandle == LONG_MAX) {
     __gl_pqSortDeletePriorityQ(tess->pq);
     tess->pq = NULL;
     longjmp(tess->env,1);
  }
  GetIntersectData( tess, eUp->Org, orgUp, dstUp, orgLo, dstLo );
  RegionAbove(regUp)->dirty = regUp->dirty = regLo->dirty = TRUE;
  return FALSE;
}

static void WalkDirtyRegions( GLUtesselator *tess, ActiveRegion *regUp )
/*
 * When the upper or lower edge of any region changes, the region is
 * marked "dirty".  This routine walks through all the dirty regions
 * and makes sure that the dictionary invariants are satisfied
 * (see the comments at the beginning of this file).  Of course
 * new dirty regions can be created as we make changes to restore
 * the invariants.
 */
{
  ActiveRegion *regLo = RegionBelow(regUp);
  GLUhalfEdge *eUp, *eLo;

  for( ;; ) {
    /* Find the lowest dirty region (we walk from the bottom up). */
    while( regLo->dirty ) {
      regUp = regLo;
      regLo = RegionBelow(regLo);
    }
    if( ! regUp->dirty ) {
      regLo = regUp;
      regUp = RegionAbove( regUp );
      if( regUp == NULL || ! regUp->dirty ) {
	/* We've walked all the dirty regions */
	return;
      }
    }
    regUp->dirty = FALSE;
    eUp = regUp->eUp;
    eLo = regLo->eUp;

    if( eUp->Dst != eLo->Dst ) {
      /* Check that the edge ordering is obeyed at the Dst vertices. */
      if( CheckForLeftSplice( tess, regUp )) {

	/* If the upper or lower edge was marked fixUpperEdge, then
	 * we no longer need it (since these edges are needed only for
	 * vertices which otherwise have no right-going edges).
	 */
	if( regLo->fixUpperEdge ) {
	  DeleteRegion( tess, regLo );
	  if ( !__gl_meshDelete( eLo ) ) longjmp(tess->env,1);
	  regLo = RegionBelow( regUp );
	  eLo = regLo->eUp;
	} else if( regUp->fixUpperEdge ) {
	  DeleteRegion( tess, regUp );
	  if ( !__gl_meshDelete( eUp ) ) longjmp(tess->env,1);
	  regUp = RegionAbove( regLo );
	  eUp = regUp->eUp;
	}
      }
    }
    if( eUp->Org != eLo->Org ) {
      if(    eUp->Dst != eLo->Dst
	  && ! regUp->fixUpperEdge && ! regLo->fixUpperEdge
	  && (eUp->Dst == tess->event || eLo->Dst == tess->event) )
      {
	/* When all else fails in CheckForIntersect(), it uses tess->event
	 * as the intersection location.  To make this possible, it requires
	 * that tess->event lie between the upper and lower edges, and also
	 * that neither of these is marked fixUpperEdge (since in the worst
	 * case it might splice one of these edges into tess->event, and
	 * violate the invariant that fixable edges are the only right-going
	 * edge from their associated vertex).
	 */
	if( CheckForIntersect( tess, regUp )) {
	  /* WalkDirtyRegions() was called recursively; we're done */
	  return;
	}
      } else {
	/* Even though we can't use CheckForIntersect(), the Org vertices
	 * may violate the dictionary edge ordering.  Check and correct this.
	 */
	(void) CheckForRightSplice( tess, regUp );
      }
    }
    if( eUp->Org == eLo->Org && eUp->Dst == eLo->Dst ) {
      /* A degenerate loop consisting of only two edges -- delete it. */
      AddWinding( eLo, eUp );
      DeleteRegion( tess, regUp );
      if ( !__gl_meshDelete( eUp ) ) longjmp(tess->env,1);
      regUp = RegionAbove( regLo );
    }
  }
}


static void ConnectRightVertex( GLUtesselator *tess, ActiveRegion *regUp,
				GLUhalfEdge *eBottomLeft )
/*
 * Purpose: connect a "right" vertex vEvent (one where all edges go left)
 * to the unprocessed portion of the mesh.  Since there are no right-going
 * edges, two regions (one above vEvent and one below) are being merged
 * into one.  "regUp" is the upper of these two regions.
 *
 * There are two reasons for doing this (adding a right-going edge):
 *  - if the two regions being merged are "inside", we must add an edge
 *    to keep them separated (the combined region would not be monotone).
 *  - in any case, we must leave some record of vEvent in the dictionary,
 *    so that we can merge vEvent with features that we have not seen yet.
 *    For example, maybe there is a vertical edge which passes just to
 *    the right of vEvent; we would like to splice vEvent into this edge.
 *
 * However, we don't want to connect vEvent to just any vertex.  We don''t
 * want the new edge to cross any other edges; otherwise we will create
 * intersection vertices even when the input data had no self-intersections.
 * (This is a bad thing; if the user's input data has no intersections,
 * we don't want to generate any false intersections ourselves.)
 *
 * Our eventual goal is to connect vEvent to the leftmost unprocessed
 * vertex of the combined region (the union of regUp and regLo).
 * But because of unseen vertices with all right-going edges, and also
 * new vertices which may be created by edge intersections, we don''t
 * know where that leftmost unprocessed vertex is.  In the meantime, we
 * connect vEvent to the closest vertex of either chain, and mark the region
 * as "fixUpperEdge".  This flag says to delete and reconnect this edge
 * to the next processed vertex on the boundary of the combined region.
 * Quite possibly the vertex we connected to will turn out to be the
 * closest one, in which case we won''t need to make any changes.
 */
{
  GLUhalfEdge *eNew;
  GLUhalfEdge *eTopLeft = eBottomLeft->Onext;
  ActiveRegion *regLo = RegionBelow(regUp);
  GLUhalfEdge *eUp = regUp->eUp;
  GLUhalfEdge *eLo = regLo->eUp;
  int degenerate = FALSE;

  if( eUp->Dst != eLo->Dst ) {
    (void) CheckForIntersect( tess, regUp );
  }

  /* Possible new degeneracies: upper or lower edge of regUp may pass
   * through vEvent, or may coincide with new intersection vertex
   */
  if( VertEq( eUp->Org, tess->event )) {
    if ( !__gl_meshSplice( eTopLeft->Oprev, eUp ) ) longjmp(tess->env,1);
    regUp = TopLeftRegion( regUp );
    if (regUp == NULL) longjmp(tess->env,1);
    eTopLeft = RegionBelow( regUp )->eUp;
    FinishLeftRegions( tess, RegionBelow(regUp), regLo );
    degenerate = TRUE;
  }
  if( VertEq( eLo->Org, tess->event )) {
    if ( !__gl_meshSplice( eBottomLeft, eLo->Oprev ) ) longjmp(tess->env,1);
    eBottomLeft = FinishLeftRegions( tess, regLo, NULL );
    degenerate = TRUE;
  }
  if( degenerate ) {
    AddRightEdges( tess, regUp, eBottomLeft->Onext, eTopLeft, eTopLeft, TRUE );
    return;
  }

  /* Non-degenerate situation -- need to add a temporary, fixable edge.
   * Connect to the closer of eLo->Org, eUp->Org.
   */
  if( VertLeq( eLo->Org, eUp->Org )) {
    eNew = eLo->Oprev;
  } else {
    eNew = eUp;
  }
  eNew = __gl_meshConnect( eBottomLeft->Lprev, eNew );
  if (eNew == NULL) longjmp(tess->env,1);

  /* Prevent cleanup, otherwise eNew might disappear before we've even
   * had a chance to mark it as a temporary edge.
   */
  AddRightEdges( tess, regUp, eNew, eNew->Onext, eNew->Onext, FALSE );
  eNew->Sym->activeRegion->fixUpperEdge = TRUE;
  WalkDirtyRegions( tess, regUp );
}

/* Because vertices at exactly the same location are merged together
 * before we process the sweep event, some degenerate cases can't occur.
 * However if someone eventually makes the modifications required to
 * merge features which are close together, the cases below marked
 * TOLERANCE_NONZERO will be useful.  They were debugged before the
 * code to merge identical vertices in the main loop was added.
 */
#define TOLERANCE_NONZERO	FALSE

static void ConnectLeftDegenerate( GLUtesselator *tess,
				   ActiveRegion *regUp, GLUvertex *vEvent )
/*
 * The event vertex lies exacty on an already-processed edge or vertex.
 * Adding the new vertex involves splicing it into the already-processed
 * part of the mesh.
 */
{
  GLUhalfEdge *e, *eTopLeft, *eTopRight, *eLast;
  ActiveRegion *reg;

  e = regUp->eUp;
  if( VertEq( e->Org, vEvent )) {
    /* e->Org is an unprocessed vertex - just combine them, and wait
     * for e->Org to be pulled from the queue
     */
    assert( TOLERANCE_NONZERO );
    SpliceMergeVertices( tess, e, vEvent->anEdge );
    return;
  }

  if( ! VertEq( e->Dst, vEvent )) {
    /* General case -- splice vEvent into edge e which passes through it */
    if (__gl_meshSplitEdge( e->Sym ) == NULL) longjmp(tess->env,1);
    if( regUp->fixUpperEdge ) {
      /* This edge was fixable -- delete unused portion of original edge */
      if ( !__gl_meshDelete( e->Onext ) ) longjmp(tess->env,1);
      regUp->fixUpperEdge = FALSE;
    }
    if ( !__gl_meshSplice( vEvent->anEdge, e ) ) longjmp(tess->env,1);
    SweepEvent( tess, vEvent ); /* recurse */
    return;
  }

  /* vEvent coincides with e->Dst, which has already been processed.
   * Splice in the additional right-going edges.
   */
  assert( TOLERANCE_NONZERO );
  regUp = TopRightRegion( regUp );
  reg = RegionBelow( regUp );
  eTopRight = reg->eUp->Sym;
  eTopLeft = eLast = eTopRight->Onext;
  if( reg->fixUpperEdge ) {
    /* Here e->Dst has only a single fixable edge going right.
     * We can delete it since now we have some real right-going edges.
     */
    assert( eTopLeft != eTopRight );   /* there are some left edges too */
    DeleteRegion( tess, reg );
    if ( !__gl_meshDelete( eTopRight ) ) longjmp(tess->env,1);
    eTopRight = eTopLeft->Oprev;
  }
  if ( !__gl_meshSplice( vEvent->anEdge, eTopRight ) ) longjmp(tess->env,1);
  if( ! EdgeGoesLeft( eTopLeft )) {
    /* e->Dst had no left-going edges -- indicate this to AddRightEdges() */
    eTopLeft = NULL;
  }
  AddRightEdges( tess, regUp, eTopRight->Onext, eLast, eTopLeft, TRUE );
}


static void ConnectLeftVertex( GLUtesselator *tess, GLUvertex *vEvent )
/*
 * Purpose: connect a "left" vertex (one where both edges go right)
 * to the processed portion of the mesh.  Let R be the active region
 * containing vEvent, and let U and L be the upper and lower edge
 * chains of R.  There are two possibilities:
 *
 * - the normal case: split R into two regions, by connecting vEvent to
 *   the rightmost vertex of U or L lying to the left of the sweep line
 *
 * - the degenerate case: if vEvent is close enough to U or L, we
 *   merge vEvent into that edge chain.  The subcases are:
 *	- merging with the rightmost vertex of U or L
 *	- merging with the active edge of U or L
 *	- merging with an already-processed portion of U or L
 */
{
  ActiveRegion *regUp, *regLo, *reg;
  GLUhalfEdge *eUp, *eLo, *eNew;
  ActiveRegion tmp;

  /* assert( vEvent->anEdge->Onext->Onext == vEvent->anEdge ); */

  /* Get a pointer to the active region containing vEvent */
  tmp.eUp = vEvent->anEdge->Sym;
  regUp = (ActiveRegion *)dictKey( dictSearch( tess->dict, &tmp ));
  regLo = RegionBelow( regUp );
  eUp = regUp->eUp;
  eLo = regLo->eUp;

  /* Try merging with U or L first */
  if( EdgeSign( eUp->Dst, vEvent, eUp->Org ) == 0 ) {
    ConnectLeftDegenerate( tess, regUp, vEvent );
    return;
  }

  /* Connect vEvent to rightmost processed vertex of either chain.
   * e->Dst is the vertex that we will connect to vEvent.
   */
  reg = VertLeq( eLo->Dst, eUp->Dst ) ? regUp : regLo;

  if( regUp->inside || reg->fixUpperEdge) {
    if( reg == regUp ) {
      eNew = __gl_meshConnect( vEvent->anEdge->Sym, eUp->Lnext );
      if (eNew == NULL) longjmp(tess->env,1);
    } else {
      GLUhalfEdge *tempHalfEdge= __gl_meshConnect( eLo->Dnext, vEvent->anEdge);
      if (tempHalfEdge == NULL) longjmp(tess->env,1);

      eNew = tempHalfEdge->Sym;
    }
    if( reg->fixUpperEdge ) {
      if ( !FixUpperEdge( reg, eNew ) ) longjmp(tess->env,1);
    } else {
      ComputeWinding( tess, AddRegionBelow( tess, regUp, eNew ));
    }
    SweepEvent( tess, vEvent );
  } else {
    /* The new vertex is in a region which does not belong to the polygon.
     * We don''t need to connect this vertex to the rest of the mesh.
     */
    AddRightEdges( tess, regUp, vEvent->anEdge, vEvent->anEdge, NULL, TRUE );
  }
}


static void SweepEvent( GLUtesselator *tess, GLUvertex *vEvent )
/*
 * Does everything necessary when the sweep line crosses a vertex.
 * Updates the mesh and the edge dictionary.
 */
{
  ActiveRegion *regUp, *reg;
  GLUhalfEdge *e, *eTopLeft, *eBottomLeft;

  tess->event = vEvent; 	/* for access in EdgeLeq() */
  DebugEvent( tess );

  /* Check if this vertex is the right endpoint of an edge that is
   * already in the dictionary.  In this case we don't need to waste
   * time searching for the location to insert new edges.
   */
  e = vEvent->anEdge;
  while( e->activeRegion == NULL ) {
    e = e->Onext;
    if( e == vEvent->anEdge ) {
      /* All edges go right -- not incident to any processed edges */
      ConnectLeftVertex( tess, vEvent );
      return;
    }
  }

  /* Processing consists of two phases: first we "finish" all the
   * active regions where both the upper and lower edges terminate
   * at vEvent (ie. vEvent is closing off these regions).
   * We mark these faces "inside" or "outside" the polygon according
   * to their winding number, and delete the edges from the dictionary.
   * This takes care of all the left-going edges from vEvent.
   */
  regUp = TopLeftRegion( e->activeRegion );
  if (regUp == NULL) longjmp(tess->env,1);
  reg = RegionBelow( regUp );
  eTopLeft = reg->eUp;
  eBottomLeft = FinishLeftRegions( tess, reg, NULL );

  /* Next we process all the right-going edges from vEvent.  This
   * involves adding the edges to the dictionary, and creating the
   * associated "active regions" which record information about the
   * regions between adjacent dictionary edges.
   */
  if( eBottomLeft->Onext == eTopLeft ) {
    /* No right-going edges -- add a temporary "fixable" edge */
    ConnectRightVertex( tess, regUp, eBottomLeft );
  } else {
    AddRightEdges( tess, regUp, eBottomLeft->Onext, eTopLeft, eTopLeft, TRUE );
  }
}


/* Make the sentinel coordinates big enough that they will never be
 * merged with real input features.  (Even with the largest possible
 * input contour and the maximum tolerance of 1.0, no merging will be
 * done with coordinates larger than 3 * GLU_TESS_MAX_COORD).
 */
#define SENTINEL_COORD	(4 * GLU_TESS_MAX_COORD)

static void AddSentinel( GLUtesselator *tess, GLdouble t )
/*
 * We add two sentinel edges above and below all other edges,
 * to avoid special cases at the top and bottom.
 */
{
  GLUhalfEdge *e;
  ActiveRegion *reg = HeapAlloc( GetProcessHeap(), 0, sizeof( ActiveRegion ));
  if (reg == NULL) longjmp(tess->env,1);

  e = __gl_meshMakeEdge( tess->mesh );
  if (e == NULL) longjmp(tess->env,1);

  e->Org->s = SENTINEL_COORD;
  e->Org->t = t;
  e->Dst->s = -SENTINEL_COORD;
  e->Dst->t = t;
  tess->event = e->Dst; 	/* initialize it */

  reg->eUp = e;
  reg->windingNumber = 0;
  reg->inside = FALSE;
  reg->fixUpperEdge = FALSE;
  reg->sentinel = TRUE;
  reg->dirty = FALSE;
  reg->nodeUp = dictInsert( tess->dict, reg );
  if (reg->nodeUp == NULL) longjmp(tess->env,1);
}


static void InitEdgeDict( GLUtesselator *tess )
/*
 * We maintain an ordering of edge intersections with the sweep line.
 * This order is maintained in a dynamic dictionary.
 */
{
  tess->dict = dictNewDict( tess, (int (*)(void *, DictKey, DictKey)) EdgeLeq );
  if (tess->dict == NULL) longjmp(tess->env,1);

  AddSentinel( tess, -SENTINEL_COORD );
  AddSentinel( tess, SENTINEL_COORD );
}


static void DoneEdgeDict( GLUtesselator *tess )
{
  ActiveRegion *reg;
#ifndef NDEBUG
  int fixedEdges = 0;
#endif

  while( (reg = (ActiveRegion *)dictKey( dictMin( tess->dict ))) != NULL ) {
    /*
     * At the end of all processing, the dictionary should contain
     * only the two sentinel edges, plus at most one "fixable" edge
     * created by ConnectRightVertex().
     */
    if( ! reg->sentinel ) {
      assert( reg->fixUpperEdge );
      assert( ++fixedEdges == 1 );
    }
    assert( reg->windingNumber == 0 );
    DeleteRegion( tess, reg );
/*    __gl_meshDelete( reg->eUp );*/
  }
  dictDeleteDict( tess->dict );
}


static void RemoveDegenerateEdges( GLUtesselator *tess )
/*
 * Remove zero-length edges, and contours with fewer than 3 vertices.
 */
{
  GLUhalfEdge *e, *eNext, *eLnext;
  GLUhalfEdge *eHead = &tess->mesh->eHead;

  /*LINTED*/
  for( e = eHead->next; e != eHead; e = eNext ) {
    eNext = e->next;
    eLnext = e->Lnext;

    if( VertEq( e->Org, e->Dst ) && e->Lnext->Lnext != e ) {
      /* Zero-length edge, contour has at least 3 edges */

      SpliceMergeVertices( tess, eLnext, e );	/* deletes e->Org */
      if ( !__gl_meshDelete( e ) ) longjmp(tess->env,1); /* e is a self-loop */
      e = eLnext;
      eLnext = e->Lnext;
    }
    if( eLnext->Lnext == e ) {
      /* Degenerate contour (one or two edges) */

      if( eLnext != e ) {
	if( eLnext == eNext || eLnext == eNext->Sym ) { eNext = eNext->next; }
	if ( !__gl_meshDelete( eLnext ) ) longjmp(tess->env,1);
      }
      if( e == eNext || e == eNext->Sym ) { eNext = eNext->next; }
      if ( !__gl_meshDelete( e ) ) longjmp(tess->env,1);
    }
  }
}

static int InitPriorityQ( GLUtesselator *tess )
/*
 * Insert all vertices into the priority queue which determines the
 * order in which vertices cross the sweep line.
 */
{
  PriorityQSort *pq;
  GLUvertex *v, *vHead;

  pq = tess->pq = __gl_pqSortNewPriorityQ( (int (*)(PQkey, PQkey)) __gl_vertLeq );
  if (pq == NULL) return 0;

  vHead = &tess->mesh->vHead;
  for( v = vHead->next; v != vHead; v = v->next ) {
    v->pqHandle = __gl_pqSortInsert( pq, v );
    if (v->pqHandle == LONG_MAX) break;
  }
  if (v != vHead || !__gl_pqSortInit( pq ) ) {
    __gl_pqSortDeletePriorityQ(tess->pq);
    tess->pq = NULL;
    return 0;
  }

  return 1;
}


static void DonePriorityQ( GLUtesselator *tess )
{
  __gl_pqSortDeletePriorityQ( tess->pq );
}


static int RemoveDegenerateFaces( GLUmesh *mesh )
/*
 * Delete any degenerate faces with only two edges.  WalkDirtyRegions()
 * will catch almost all of these, but it won't catch degenerate faces
 * produced by splice operations on already-processed edges.
 * The two places this can happen are in FinishLeftRegions(), when
 * we splice in a "temporary" edge produced by ConnectRightVertex(),
 * and in CheckForLeftSplice(), where we splice already-processed
 * edges to ensure that our dictionary invariants are not violated
 * by numerical errors.
 *
 * In both these cases it is *very* dangerous to delete the offending
 * edge at the time, since one of the routines further up the stack
 * will sometimes be keeping a pointer to that edge.
 */
{
  GLUface *f, *fNext;
  GLUhalfEdge *e;

  /*LINTED*/
  for( f = mesh->fHead.next; f != &mesh->fHead; f = fNext ) {
    fNext = f->next;
    e = f->anEdge;
    assert( e->Lnext != e );

    if( e->Lnext->Lnext == e ) {
      /* A face with only two edges */
      AddWinding( e->Onext, e );
      if ( !__gl_meshDelete( e ) ) return 0;
    }
  }
  return 1;
}

int __gl_computeInterior( GLUtesselator *tess )
/*
 * __gl_computeInterior( tess ) computes the planar arrangement specified
 * by the given contours, and further subdivides this arrangement
 * into regions.  Each region is marked "inside" if it belongs
 * to the polygon, according to the rule given by tess->windingRule.
 * Each interior region is guaranteed be monotone.
 */
{
  GLUvertex *v, *vNext;

  tess->fatalError = FALSE;

  /* Each vertex defines an event for our sweep line.  Start by inserting
   * all the vertices in a priority queue.  Events are processed in
   * lexicographic order, ie.
   *
   *	e1 < e2  iff  e1.x < e2.x || (e1.x == e2.x && e1.y < e2.y)
   */
  RemoveDegenerateEdges( tess );
  if ( !InitPriorityQ( tess ) ) return 0; /* if error */
  InitEdgeDict( tess );

  /* __gl_pqSortExtractMin */
  while( (v = (GLUvertex *)__gl_pqSortExtractMin( tess->pq )) != NULL ) {
    for( ;; ) {
      vNext = (GLUvertex *)__gl_pqSortMinimum( tess->pq );
      if( vNext == NULL || ! VertEq( vNext, v )) break;

      /* Merge together all vertices at exactly the same location.
       * This is more efficient than processing them one at a time,
       * simplifies the code (see ConnectLeftDegenerate), and is also
       * important for correct handling of certain degenerate cases.
       * For example, suppose there are two identical edges A and B
       * that belong to different contours (so without this code they would
       * be processed by separate sweep events).  Suppose another edge C
       * crosses A and B from above.  When A is processed, we split it
       * at its intersection point with C.  However this also splits C,
       * so when we insert B we may compute a slightly different
       * intersection point.  This might leave two edges with a small
       * gap between them.  This kind of error is especially obvious
       * when using boundary extraction (GLU_TESS_BOUNDARY_ONLY).
       */
      vNext = (GLUvertex *)__gl_pqSortExtractMin( tess->pq );
      SpliceMergeVertices( tess, v->anEdge, vNext->anEdge );
    }
    SweepEvent( tess, v );
  }

  /* Set tess->event for debugging purposes */
  tess->event = ((ActiveRegion *) dictKey( dictMin( tess->dict )))->eUp->Org;
  DebugEvent( tess );
  DoneEdgeDict( tess );
  DonePriorityQ( tess );

  if ( !RemoveDegenerateFaces( tess->mesh ) ) return 0;
  __gl_meshCheckMesh( tess->mesh );

  return 1;
}