fd.c 69.7 KB
Newer Older
1 2 3
/*
 * Server-side file descriptor management
 *
4
 * Copyright (C) 2000, 2003 Alexandre Julliard
5 6 7 8 9 10 11 12 13 14 15 16 17
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with this library; if not, write to the Free Software
18
 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA
19 20 21 22
 */


#include "config.h"
23
#include "wine/port.h"
24 25

#include <assert.h>
26
#include <errno.h>
27
#include <fcntl.h>
28
#include <limits.h>
29
#include <signal.h>
30
#include <stdarg.h>
31 32 33
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
34 35 36
#ifdef HAVE_POLL_H
#include <poll.h>
#endif
37 38 39
#ifdef HAVE_SYS_POLL_H
#include <sys/poll.h>
#endif
40 41 42 43 44 45 46
#ifdef HAVE_LINUX_MAJOR_H
#include <linux/major.h>
#endif
#ifdef HAVE_SYS_STATVFS_H
#include <sys/statvfs.h>
#endif
#ifdef HAVE_SYS_VFS_H
47 48 49 50 51 52 53 54 55 56 57
/*
 * Solaris defines its system list in sys/list.h.
 * This need to be workaround it here.
 */
#define list SYSLIST
#define list_next SYSLIST_NEXT
#define list_prev SYSLIST_PREV
#define list_head SYSLIST_HEAD
#define list_tail SYSLIST_TAIL
#define list_move_tail SYSLIST_MOVE_TAIL
#define list_remove SYSLIST_REMOVE
58
#include <sys/vfs.h>
59 60 61 62 63 64 65
#undef list
#undef list_next
#undef list_prev
#undef list_head
#undef list_tail
#undef list_move_tail
#undef list_remove
66
#endif
67 68 69
#ifdef HAVE_SYS_PARAM_H
#include <sys/param.h>
#endif
70 71 72 73 74 75
#ifdef HAVE_SYS_MOUNT_H
#include <sys/mount.h>
#endif
#ifdef HAVE_SYS_STATFS_H
#include <sys/statfs.h>
#endif
76 77 78
#ifdef HAVE_SYS_SYSCTL_H
#include <sys/sysctl.h>
#endif
79 80 81 82 83
#ifdef HAVE_SYS_EVENT_H
#include <sys/event.h>
#undef LIST_INIT
#undef LIST_ENTRY
#endif
84 85 86
#ifdef HAVE_STDINT_H
#include <stdint.h>
#endif
87
#include <sys/stat.h>
88 89
#include <sys/time.h>
#include <sys/types.h>
90 91
#include <unistd.h>

92 93
#include "ntstatus.h"
#define WIN32_NO_STATUS
94 95 96 97 98 99
#include "object.h"
#include "file.h"
#include "handle.h"
#include "process.h"
#include "request.h"

100
#include "winternl.h"
101
#include "winioctl.h"
102

103
#if defined(HAVE_SYS_EPOLL_H) && defined(HAVE_EPOLL_CREATE)
104
# include <sys/epoll.h>
105
# define USE_EPOLL
106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
#elif defined(linux) && defined(__i386__) && defined(HAVE_STDINT_H)
# define USE_EPOLL
# define EPOLLIN POLLIN
# define EPOLLOUT POLLOUT
# define EPOLLERR POLLERR
# define EPOLLHUP POLLHUP
# define EPOLL_CTL_ADD 1
# define EPOLL_CTL_DEL 2
# define EPOLL_CTL_MOD 3

typedef union epoll_data
{
  void *ptr;
  int fd;
  uint32_t u32;
  uint64_t u64;
} epoll_data_t;

struct epoll_event
{
  uint32_t events;
  epoll_data_t data;
};

#define SYSCALL_RET(ret) do { \
        if (ret < 0) { errno = -ret; ret = -1; } \
        return ret; \
    } while(0)

static inline int epoll_create( int size )
{
    int ret;
    __asm__( "pushl %%ebx; movl %2,%%ebx; int $0x80; popl %%ebx"
139
             : "=a" (ret) : "0" (254 /*NR_epoll_create*/), "r" (size) );
140 141 142 143 144 145 146 147
    SYSCALL_RET(ret);
}

static inline int epoll_ctl( int epfd, int op, int fd, const struct epoll_event *event )
{
    int ret;
    __asm__( "pushl %%ebx; movl %2,%%ebx; int $0x80; popl %%ebx"
             : "=a" (ret)
148
             : "0" (255 /*NR_epoll_ctl*/), "r" (epfd), "c" (op), "d" (fd), "S" (event), "m" (*event) );
149 150 151 152 153 154 155 156
    SYSCALL_RET(ret);
}

static inline int epoll_wait( int epfd, struct epoll_event *events, int maxevents, int timeout )
{
    int ret;
    __asm__( "pushl %%ebx; movl %2,%%ebx; int $0x80; popl %%ebx"
             : "=a" (ret)
157
             : "0" (256 /*NR_epoll_wait*/), "r" (epfd), "c" (events), "d" (maxevents), "S" (timeout)
158 159 160 161 162 163 164
             : "memory" );
    SYSCALL_RET(ret);
}
#undef SYSCALL_RET

#endif /* linux && __i386__ && HAVE_STDINT_H */

165 166 167 168
#if defined(HAVE_PORT_H) && defined(HAVE_PORT_CREATE)
# include <port.h>
# define USE_EVENT_PORTS
#endif /* HAVE_PORT_H && HAVE_PORT_CREATE */
169

170 171 172 173 174
/* Because of the stupid Posix locking semantics, we need to keep
 * track of all file descriptors referencing a given file, and not
 * close a single one until all the locks are gone (sigh).
 */

175 176 177 178 179
/* file descriptor object */

/* closed_fd is used to keep track of the unix fd belonging to a closed fd object */
struct closed_fd
{
180
    struct list entry;       /* entry in inode closed list */
181
    int         unix_fd;     /* the unix file descriptor */
182
    char        unlink[1];   /* name to unlink on close (if any) */
183 184
};

185 186
struct fd
{
187 188 189 190 191 192
    struct object        obj;         /* object header */
    const struct fd_ops *fd_ops;      /* file descriptor operations */
    struct inode        *inode;       /* inode that this fd belongs to */
    struct list          inode_entry; /* entry in inode fd list */
    struct closed_fd    *closed;      /* structure to store the unix fd at destroy time */
    struct object       *user;        /* object using this file descriptor */
193
    struct list          locks;       /* list of locks on this fd */
194
    unsigned int         access;      /* file access (FILE_READ_DATA etc.) */
195
    unsigned int         options;     /* file options (FILE_DELETE_ON_CLOSE, FILE_SYNCHRONOUS...) */
196
    unsigned int         sharing;     /* file sharing mode */
197
    char                *unix_name;   /* unix file name */
198
    int                  unix_fd;     /* unix file descriptor */
199
    unsigned int         no_fd_status;/* status to return when unix_fd is -1 */
200 201
    unsigned int         signaled :1; /* is the fd signaled? */
    unsigned int         fs_locks :1; /* can we use filesystem locks for this fd? */
202
    int                  poll_index;  /* index of fd in poll array */
203 204 205
    struct async_queue  *read_q;      /* async readers of this fd */
    struct async_queue  *write_q;     /* async writers of this fd */
    struct async_queue  *wait_q;      /* other async waiters of this fd */
206
    struct completion   *completion;  /* completion object attached to this fd */
207
    apc_param_t          comp_key;    /* completion key to set in completion events */
208 209 210 211 212 213 214 215 216
};

static void fd_dump( struct object *obj, int verbose );
static void fd_destroy( struct object *obj );

static const struct object_ops fd_ops =
{
    sizeof(struct fd),        /* size */
    fd_dump,                  /* dump */
217
    no_get_type,              /* get_type */
218 219 220 221
    no_add_queue,             /* add_queue */
    NULL,                     /* remove_queue */
    NULL,                     /* signaled */
    NULL,                     /* satisfied */
222
    no_signal,                /* signal */
223
    no_get_fd,                /* get_fd */
224
    no_map_access,            /* map_access */
225 226
    default_get_sd,           /* get_sd */
    default_set_sd,           /* set_sd */
227
    no_lookup_name,           /* lookup_name */
228
    no_open_file,             /* open_file */
229
    no_close_handle,          /* close_handle */
230 231 232
    fd_destroy                /* destroy */
};

233 234 235 236 237 238 239 240 241 242
/* device object */

#define DEVICE_HASH_SIZE 7
#define INODE_HASH_SIZE 17

struct device
{
    struct object       obj;        /* object header */
    struct list         entry;      /* entry in device hash list */
    dev_t               dev;        /* device number */
243
    int                 removable;  /* removable device? (or -1 if unknown) */
244 245 246 247 248 249 250 251 252 253
    struct list         inode_hash[INODE_HASH_SIZE];  /* inodes hash table */
};

static void device_dump( struct object *obj, int verbose );
static void device_destroy( struct object *obj );

static const struct object_ops device_ops =
{
    sizeof(struct device),    /* size */
    device_dump,              /* dump */
254
    no_get_type,              /* get_type */
255 256 257 258 259 260
    no_add_queue,             /* add_queue */
    NULL,                     /* remove_queue */
    NULL,                     /* signaled */
    NULL,                     /* satisfied */
    no_signal,                /* signal */
    no_get_fd,                /* get_fd */
261
    no_map_access,            /* map_access */
262 263
    default_get_sd,           /* get_sd */
    default_set_sd,           /* set_sd */
264
    no_lookup_name,           /* lookup_name */
265
    no_open_file,             /* open_file */
266 267 268 269
    no_close_handle,          /* close_handle */
    device_destroy            /* destroy */
};

270 271 272 273 274 275
/* inode object */

struct inode
{
    struct object       obj;        /* object header */
    struct list         entry;      /* inode hash list entry */
276
    struct device      *device;     /* device containing this inode */
277 278
    ino_t               ino;        /* inode number */
    struct list         open;       /* list of open file descriptors */
279
    struct list         locks;      /* list of file locks */
280
    struct list         closed;     /* list of file descriptors to close at destroy time */
281 282 283 284 285 286 287 288 289
};

static void inode_dump( struct object *obj, int verbose );
static void inode_destroy( struct object *obj );

static const struct object_ops inode_ops =
{
    sizeof(struct inode),     /* size */
    inode_dump,               /* dump */
290
    no_get_type,              /* get_type */
291 292 293 294
    no_add_queue,             /* add_queue */
    NULL,                     /* remove_queue */
    NULL,                     /* signaled */
    NULL,                     /* satisfied */
295
    no_signal,                /* signal */
296
    no_get_fd,                /* get_fd */
297
    no_map_access,            /* map_access */
298 299
    default_get_sd,           /* get_sd */
    default_set_sd,           /* set_sd */
300
    no_lookup_name,           /* lookup_name */
301
    no_open_file,             /* open_file */
302
    no_close_handle,          /* close_handle */
303 304 305
    inode_destroy             /* destroy */
};

306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327
/* file lock object */

struct file_lock
{
    struct object       obj;         /* object header */
    struct fd          *fd;          /* fd owning this lock */
    struct list         fd_entry;    /* entry in list of locks on a given fd */
    struct list         inode_entry; /* entry in inode list of locks */
    int                 shared;      /* shared lock? */
    file_pos_t          start;       /* locked region is interval [start;end) */
    file_pos_t          end;
    struct process     *process;     /* process owning this lock */
    struct list         proc_entry;  /* entry in list of locks owned by the process */
};

static void file_lock_dump( struct object *obj, int verbose );
static int file_lock_signaled( struct object *obj, struct thread *thread );

static const struct object_ops file_lock_ops =
{
    sizeof(struct file_lock),   /* size */
    file_lock_dump,             /* dump */
328
    no_get_type,                /* get_type */
329 330 331 332
    add_queue,                  /* add_queue */
    remove_queue,               /* remove_queue */
    file_lock_signaled,         /* signaled */
    no_satisfied,               /* satisfied */
333
    no_signal,                  /* signal */
334
    no_get_fd,                  /* get_fd */
335
    no_map_access,              /* map_access */
336 337
    default_get_sd,             /* get_sd */
    default_set_sd,             /* set_sd */
338
    no_lookup_name,             /* lookup_name */
339
    no_open_file,               /* open_file */
340
    no_close_handle,            /* close_handle */
341 342 343 344 345 346 347 348 349
    no_destroy                  /* destroy */
};


#define OFF_T_MAX       (~((file_pos_t)1 << (8*sizeof(off_t)-1)))
#define FILE_POS_T_MAX  (~(file_pos_t)0)

static file_pos_t max_unix_offset = OFF_T_MAX;

350 351
#define DUMP_LONG_LONG(val) do { \
    if (sizeof(val) > sizeof(unsigned long) && (val) > ~0UL) \
352
        fprintf( stderr, "%lx%08lx", (unsigned long)((unsigned long long)(val) >> 32), (unsigned long)(val) ); \
353 354 355 356 357
    else \
        fprintf( stderr, "%lx", (unsigned long)(val) ); \
  } while (0)


358

359 360 361 362 363
/****************************************************************/
/* timeouts support */

struct timeout_user
{
364
    struct list           entry;      /* entry in sorted timeout list */
365
    timeout_t             when;       /* timeout expiry (absolute time) */
366 367 368 369
    timeout_callback      callback;   /* callback function */
    void                 *private;    /* callback private data */
};

370
static struct list timeout_list = LIST_INIT(timeout_list);   /* sorted timeouts list */
371 372 373 374 375 376 377 378 379
timeout_t current_time;

static inline void set_current_time(void)
{
    static const timeout_t ticks_1601_to_1970 = (timeout_t)86400 * (369 * 365 + 89) * TICKS_PER_SEC;
    struct timeval now;
    gettimeofday( &now, NULL );
    current_time = (timeout_t)now.tv_sec * TICKS_PER_SEC + now.tv_usec * 10 + ticks_1601_to_1970;
}
380 381

/* add a timeout user */
382
struct timeout_user *add_timeout_user( timeout_t when, timeout_callback func, void *private )
383 384
{
    struct timeout_user *user;
385
    struct list *ptr;
386 387

    if (!(user = mem_alloc( sizeof(*user) ))) return NULL;
388
    user->when     = (when > 0) ? when : current_time - when;
389 390 391 392 393
    user->callback = func;
    user->private  = private;

    /* Now insert it in the linked list */

394
    LIST_FOR_EACH( ptr, &timeout_list )
395
    {
396
        struct timeout_user *timeout = LIST_ENTRY( ptr, struct timeout_user, entry );
397
        if (timeout->when >= user->when) break;
398
    }
399
    list_add_before( ptr, &user->entry );
400 401 402 403 404 405
    return user;
}

/* remove a timeout user */
void remove_timeout_user( struct timeout_user *user )
{
406
    list_remove( &user->entry );
407 408 409
    free( user );
}

410 411
/* return a text description of a timeout for debugging purposes */
const char *get_timeout_str( timeout_t timeout )
412
{
413 414 415 416 417 418 419 420 421 422 423 424 425
    static char buffer[64];
    long secs, nsecs;

    if (!timeout) return "0";
    if (timeout == TIMEOUT_INFINITE) return "infinite";

    if (timeout < 0)  /* relative */
    {
        secs = -timeout / TICKS_PER_SEC;
        nsecs = -timeout % TICKS_PER_SEC;
        sprintf( buffer, "+%ld.%07ld", secs, nsecs );
    }
    else  /* absolute */
426
    {
427 428 429
        secs = (timeout - current_time) / TICKS_PER_SEC;
        nsecs = (timeout - current_time) % TICKS_PER_SEC;
        if (nsecs < 0)
430
        {
431 432
            nsecs += TICKS_PER_SEC;
            secs--;
433
        }
434 435 436 437 438 439 440
        if (secs >= 0)
            sprintf( buffer, "%x%08x (+%ld.%07ld)",
                     (unsigned int)(timeout >> 32), (unsigned int)timeout, secs, nsecs );
        else
            sprintf( buffer, "%x%08x (-%ld.%07ld)",
                     (unsigned int)(timeout >> 32), (unsigned int)timeout,
                     -(secs + 1), TICKS_PER_SEC - nsecs );
441
    }
442
    return buffer;
443 444 445 446 447 448 449 450 451 452 453 454 455
}


/****************************************************************/
/* poll support */

static struct fd **poll_users;              /* users array */
static struct pollfd *pollfd;               /* poll fd array */
static int nb_users;                        /* count of array entries actually in use */
static int active_users;                    /* current number of active users */
static int allocated_users;                 /* count of allocated entries in the array */
static struct fd **freelist;                /* list of free entries in the array */

456 457
static int get_next_timeout(void);

458 459 460 461 462
static inline void fd_poll_event( struct fd *fd, int event )
{
    fd->fd_ops->poll_event( fd, event );
}

463 464
#ifdef USE_EPOLL

465
static int epoll_fd = -1;
466 467 468 469 470

static inline void init_epoll(void)
{
    epoll_fd = epoll_create( 128 );
}
471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496

/* set the events that epoll waits for on this fd; helper for set_fd_events */
static inline void set_fd_epoll_events( struct fd *fd, int user, int events )
{
    struct epoll_event ev;
    int ctl;

    if (epoll_fd == -1) return;

    if (events == -1)  /* stop waiting on this fd completely */
    {
        if (pollfd[user].fd == -1) return;  /* already removed */
        ctl = EPOLL_CTL_DEL;
    }
    else if (pollfd[user].fd == -1)
    {
        if (pollfd[user].events) return;  /* stopped waiting on it, don't restart */
        ctl = EPOLL_CTL_ADD;
    }
    else
    {
        if (pollfd[user].events == events) return;  /* nothing to do */
        ctl = EPOLL_CTL_MOD;
    }

    ev.events = events;
497
    memset(&ev.data, 0, sizeof(ev.data));
498 499 500 501 502 503 504 505 506 507 508 509 510
    ev.data.u32 = user;

    if (epoll_ctl( epoll_fd, ctl, fd->unix_fd, &ev ) == -1)
    {
        if (errno == ENOMEM)  /* not enough memory, give up on epoll */
        {
            close( epoll_fd );
            epoll_fd = -1;
        }
        else perror( "epoll_ctl" );  /* should not happen */
    }
}

511 512 513
static inline void remove_epoll_user( struct fd *fd, int user )
{
    if (epoll_fd == -1) return;
514

515 516 517 518 519 520 521 522
    if (pollfd[user].fd != -1)
    {
        struct epoll_event dummy;
        epoll_ctl( epoll_fd, EPOLL_CTL_DEL, fd->unix_fd, &dummy );
    }
}

static inline void main_loop_epoll(void)
523
{
524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541
    int i, ret, timeout;
    struct epoll_event events[128];

    assert( POLLIN == EPOLLIN );
    assert( POLLOUT == EPOLLOUT );
    assert( POLLERR == EPOLLERR );
    assert( POLLHUP == EPOLLHUP );

    if (epoll_fd == -1) return;

    while (active_users)
    {
        timeout = get_next_timeout();

        if (!active_users) break;  /* last user removed by a timeout */
        if (epoll_fd == -1) break;  /* an error occurred with epoll */

        ret = epoll_wait( epoll_fd, events, sizeof(events)/sizeof(events[0]), timeout );
542
        set_current_time();
543 544 545 546 547 548 549 550 551 552 553 554 555 556 557

        /* put the events into the pollfd array first, like poll does */
        for (i = 0; i < ret; i++)
        {
            int user = events[i].data.u32;
            pollfd[user].revents = events[i].events;
        }

        /* read events from the pollfd array, as set_fd_events may modify them */
        for (i = 0; i < ret; i++)
        {
            int user = events[i].data.u32;
            if (pollfd[user].revents) fd_poll_event( poll_users[user], pollfd[user].revents );
        }
    }
558 559
}

560 561 562 563 564 565
#elif defined(HAVE_KQUEUE)

static int kqueue_fd = -1;

static inline void init_epoll(void)
{
566 567 568 569 570 571 572 573 574
#ifdef __APPLE__ /* kqueue support is broken in Mac OS < 10.5 */
    int mib[2];
    char release[32];
    size_t len = sizeof(release);

    mib[0] = CTL_KERN;
    mib[1] = KERN_OSRELEASE;
    if (sysctl( mib, 2, release, &len, NULL, 0 ) == -1) return;
    if (atoi(release) < 9) return;
575
#endif
576
    kqueue_fd = kqueue();
577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655
}

static inline void set_fd_epoll_events( struct fd *fd, int user, int events )
{
    struct kevent ev[2];

    if (kqueue_fd == -1) return;

    EV_SET( &ev[0], fd->unix_fd, EVFILT_READ, 0, NOTE_LOWAT, 1, (void *)user );
    EV_SET( &ev[1], fd->unix_fd, EVFILT_WRITE, 0, NOTE_LOWAT, 1, (void *)user );

    if (events == -1)  /* stop waiting on this fd completely */
    {
        if (pollfd[user].fd == -1) return;  /* already removed */
        ev[0].flags |= EV_DELETE;
        ev[1].flags |= EV_DELETE;
    }
    else if (pollfd[user].fd == -1)
    {
        if (pollfd[user].events) return;  /* stopped waiting on it, don't restart */
        ev[0].flags |= EV_ADD | ((events & POLLIN) ? EV_ENABLE : EV_DISABLE);
        ev[1].flags |= EV_ADD | ((events & POLLOUT) ? EV_ENABLE : EV_DISABLE);
    }
    else
    {
        if (pollfd[user].events == events) return;  /* nothing to do */
        ev[0].flags |= (events & POLLIN) ? EV_ENABLE : EV_DISABLE;
        ev[1].flags |= (events & POLLOUT) ? EV_ENABLE : EV_DISABLE;
    }

    if (kevent( kqueue_fd, ev, 2, NULL, 0, NULL ) == -1)
    {
        if (errno == ENOMEM)  /* not enough memory, give up on kqueue */
        {
            close( kqueue_fd );
            kqueue_fd = -1;
        }
        else perror( "kevent" );  /* should not happen */
    }
}

static inline void remove_epoll_user( struct fd *fd, int user )
{
    if (kqueue_fd == -1) return;

    if (pollfd[user].fd != -1)
    {
        struct kevent ev[2];

        EV_SET( &ev[0], fd->unix_fd, EVFILT_READ, EV_DELETE, 0, 0, 0 );
        EV_SET( &ev[1], fd->unix_fd, EVFILT_WRITE, EV_DELETE, 0, 0, 0 );
        kevent( kqueue_fd, ev, 2, NULL, 0, NULL );
    }
}

static inline void main_loop_epoll(void)
{
    int i, ret, timeout;
    struct kevent events[128];

    if (kqueue_fd == -1) return;

    while (active_users)
    {
        timeout = get_next_timeout();

        if (!active_users) break;  /* last user removed by a timeout */
        if (kqueue_fd == -1) break;  /* an error occurred with kqueue */

        if (timeout != -1)
        {
            struct timespec ts;

            ts.tv_sec = timeout / 1000;
            ts.tv_nsec = (timeout % 1000) * 1000000;
            ret = kevent( kqueue_fd, NULL, 0, events, sizeof(events)/sizeof(events[0]), &ts );
        }
        else ret = kevent( kqueue_fd, NULL, 0, events, sizeof(events)/sizeof(events[0]), NULL );

656
        set_current_time();
657

658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682
        /* put the events into the pollfd array first, like poll does */
        for (i = 0; i < ret; i++)
        {
            long user = (long)events[i].udata;
            pollfd[user].revents = 0;
        }
        for (i = 0; i < ret; i++)
        {
            long user = (long)events[i].udata;
            if (events[i].filter == EVFILT_READ) pollfd[user].revents |= POLLIN;
            else if (events[i].filter == EVFILT_WRITE) pollfd[user].revents |= POLLOUT;
            if (events[i].flags & EV_EOF) pollfd[user].revents |= POLLHUP;
            if (events[i].flags & EV_ERROR) pollfd[user].revents |= POLLERR;
        }

        /* read events from the pollfd array, as set_fd_events may modify them */
        for (i = 0; i < ret; i++)
        {
            long user = (long)events[i].udata;
            if (pollfd[user].revents) fd_poll_event( poll_users[user], pollfd[user].revents );
            pollfd[user].revents = 0;
        }
    }
}

683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783
#elif defined(USE_EVENT_PORTS)

static int port_fd = -1;

static inline void init_epoll(void)
{
    port_fd = port_create();
}

static inline void set_fd_epoll_events( struct fd *fd, int user, int events )
{
    int ret;

    if (port_fd == -1) return;

    if (events == -1)  /* stop waiting on this fd completely */
    {
        if (pollfd[user].fd == -1) return;  /* already removed */
        port_dissociate( port_fd, PORT_SOURCE_FD, fd->unix_fd );
    }
    else if (pollfd[user].fd == -1)
    {
        if (pollfd[user].events) return;  /* stopped waiting on it, don't restart */
        ret = port_associate( port_fd, PORT_SOURCE_FD, fd->unix_fd, events, (void *)user );
    }
    else
    {
        if (pollfd[user].events == events) return;  /* nothing to do */
        ret = port_associate( port_fd, PORT_SOURCE_FD, fd->unix_fd, events, (void *)user );
    }

    if (ret == -1)
    {
        if (errno == ENOMEM)  /* not enough memory, give up on port_associate */
        {
            close( port_fd );
            port_fd = -1;
        }
        else perror( "port_associate" );  /* should not happen */
    }
}

static inline void remove_epoll_user( struct fd *fd, int user )
{
    if (port_fd == -1) return;

    if (pollfd[user].fd != -1)
    {
        port_dissociate( port_fd, PORT_SOURCE_FD, fd->unix_fd );
    }
}

static inline void main_loop_epoll(void)
{
    int i, nget, ret, timeout;
    port_event_t events[128];

    if (port_fd == -1) return;

    while (active_users)
    {
        timeout = get_next_timeout();
        nget = 1;

        if (!active_users) break;  /* last user removed by a timeout */
        if (port_fd == -1) break;  /* an error occurred with event completion */

        if (timeout != -1)
        {
            struct timespec ts;

            ts.tv_sec = timeout / 1000;
            ts.tv_nsec = (timeout % 1000) * 1000000;
            ret = port_getn( port_fd, events, sizeof(events)/sizeof(events[0]), &nget, &ts );
        }
        else ret = port_getn( port_fd, events, sizeof(events)/sizeof(events[0]), &nget, NULL );

	if (ret == -1) break;  /* an error occurred with event completion */

        set_current_time();

        /* put the events into the pollfd array first, like poll does */
        for (i = 0; i < nget; i++)
        {
            long user = (long)events[i].portev_user;
            pollfd[user].revents = events[i].portev_events;
        }

        /* read events from the pollfd array, as set_fd_events may modify them */
        for (i = 0; i < nget; i++)
        {
            long user = (long)events[i].portev_user;
            if (pollfd[user].revents) fd_poll_event( poll_users[user], pollfd[user].revents );
            /* if we are still interested, reassociate the fd */
            if (pollfd[user].fd != -1) {
                port_associate( port_fd, PORT_SOURCE_FD, pollfd[user].fd, pollfd[user].events, (void *)user );
            }
        }
    }
}

784
#else /* HAVE_KQUEUE */
785 786 787 788 789 790

static inline void init_epoll(void) { }
static inline void set_fd_epoll_events( struct fd *fd, int user, int events ) { }
static inline void remove_epoll_user( struct fd *fd, int user ) { }
static inline void main_loop_epoll(void) { }

791 792 793
#endif /* USE_EPOLL */


794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820
/* add a user in the poll array and return its index, or -1 on failure */
static int add_poll_user( struct fd *fd )
{
    int ret;
    if (freelist)
    {
        ret = freelist - poll_users;
        freelist = (struct fd **)poll_users[ret];
    }
    else
    {
        if (nb_users == allocated_users)
        {
            struct fd **newusers;
            struct pollfd *newpoll;
            int new_count = allocated_users ? (allocated_users + allocated_users / 2) : 16;
            if (!(newusers = realloc( poll_users, new_count * sizeof(*poll_users) ))) return -1;
            if (!(newpoll = realloc( pollfd, new_count * sizeof(*pollfd) )))
            {
                if (allocated_users)
                    poll_users = newusers;
                else
                    free( newusers );
                return -1;
            }
            poll_users = newusers;
            pollfd = newpoll;
821
            if (!allocated_users) init_epoll();
822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838
            allocated_users = new_count;
        }
        ret = nb_users++;
    }
    pollfd[ret].fd = -1;
    pollfd[ret].events = 0;
    pollfd[ret].revents = 0;
    poll_users[ret] = fd;
    active_users++;
    return ret;
}

/* remove a user from the poll list */
static void remove_poll_user( struct fd *fd, int user )
{
    assert( user >= 0 );
    assert( poll_users[user] == fd );
839

840
    remove_epoll_user( fd, user );
841 842 843 844 845 846 847 848
    pollfd[user].fd = -1;
    pollfd[user].events = 0;
    pollfd[user].revents = 0;
    poll_users[user] = (struct fd *)freelist;
    freelist = &poll_users[user];
    active_users--;
}

849 850
/* process pending timeouts and return the time until the next timeout, in milliseconds */
static int get_next_timeout(void)
851
{
852
    if (!list_empty( &timeout_list ))
853
    {
854
        struct list expired_list, *ptr;
855

856
        /* first remove all expired timers from the list */
857

858 859 860 861
        list_init( &expired_list );
        while ((ptr = list_head( &timeout_list )) != NULL)
        {
            struct timeout_user *timeout = LIST_ENTRY( ptr, struct timeout_user, entry );
862

863
            if (timeout->when <= current_time)
864
            {
865
                list_remove( &timeout->entry );
866
                list_add_tail( &expired_list, &timeout->entry );
867
            }
868 869
            else break;
        }
870

871
        /* now call the callback for all the removed timers */
872

873 874 875 876 877 878 879 880 881 882 883
        while ((ptr = list_head( &expired_list )) != NULL)
        {
            struct timeout_user *timeout = LIST_ENTRY( ptr, struct timeout_user, entry );
            list_remove( &timeout->entry );
            timeout->callback( timeout->private );
            free( timeout );
        }

        if ((ptr = list_head( &timeout_list )) != NULL)
        {
            struct timeout_user *timeout = LIST_ENTRY( ptr, struct timeout_user, entry );
884
            int diff = (timeout->when - current_time + 9999) / 10000;
885 886
            if (diff < 0) diff = 0;
            return diff;
887
        }
888 889 890 891 892 893 894 895 896
    }
    return -1;  /* no pending timeouts */
}

/* server main poll() loop */
void main_loop(void)
{
    int i, ret, timeout;

897 898
    set_current_time();
    server_start_time = current_time;
899

900
    main_loop_epoll();
901 902
    /* fall through to normal poll loop */

903 904 905 906 907
    while (active_users)
    {
        timeout = get_next_timeout();

        if (!active_users) break;  /* last user removed by a timeout */
908

909
        ret = poll( pollfd, nb_users, timeout );
910
        set_current_time();
911

912 913 914 915 916 917 918 919 920 921 922 923 924 925
        if (ret > 0)
        {
            for (i = 0; i < nb_users; i++)
            {
                if (pollfd[i].revents)
                {
                    fd_poll_event( poll_users[i], pollfd[i].revents );
                    if (!--ret) break;
                }
            }
        }
    }
}

926 927

/****************************************************************/
928 929 930 931
/* device functions */

static struct list device_hash[DEVICE_HASH_SIZE];

932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947
static int is_device_removable( dev_t dev, int unix_fd )
{
#if defined(linux) && defined(HAVE_FSTATFS)
    struct statfs stfs;

    /* check for floppy disk */
    if (major(dev) == FLOPPY_MAJOR) return 1;

    if (fstatfs( unix_fd, &stfs ) == -1) return 0;
    return (stfs.f_type == 0x9660 ||    /* iso9660 */
            stfs.f_type == 0x9fa1 ||    /* supermount */
            stfs.f_type == 0x15013346); /* udf */
#elif defined(__FreeBSD__) || defined(__FreeBSD_kernel__) || defined(__APPLE__)
    struct statfs stfs;

    if (fstatfs( unix_fd, &stfs ) == -1) return 0;
948
    return (!strcmp("cd9660", stfs.f_fstypename) || !strcmp("udf", stfs.f_fstypename));
949 950 951 952
#elif defined(__NetBSD__)
    struct statvfs stfs;

    if (fstatvfs( unix_fd, &stfs ) == -1) return 0;
953
    return (!strcmp("cd9660", stfs.f_fstypename) || !strcmp("udf", stfs.f_fstypename));
954 955 956 957 958 959 960 961 962 963 964 965 966 967 968
#elif defined(sun)
# include <sys/dkio.h>
# include <sys/vtoc.h>
    struct dk_cinfo dkinf;
    if (ioctl( unix_fd, DKIOCINFO, &dkinf ) == -1) return 0;
    return (dkinf.dki_ctype == DKC_CDROM ||
            dkinf.dki_ctype == DKC_NCRFLOPPY ||
            dkinf.dki_ctype == DKC_SMSFLOPPY ||
            dkinf.dki_ctype == DKC_INTEL82072 ||
            dkinf.dki_ctype == DKC_INTEL82077);
#else
    return 0;
#endif
}

969
/* retrieve the device object for a given fd, creating it if needed */
970
static struct device *get_device( dev_t dev, int unix_fd )
971 972 973
{
    struct device *device;
    unsigned int i, hash = dev % DEVICE_HASH_SIZE;
974

975 976 977 978 979 980 981 982
    if (device_hash[hash].next)
    {
        LIST_FOR_EACH_ENTRY( device, &device_hash[hash], struct device, entry )
            if (device->dev == dev) return (struct device *)grab_object( device );
    }
    else list_init( &device_hash[hash] );

    /* not found, create it */
983

984
    if (unix_fd == -1) return NULL;
985 986 987
    if ((device = alloc_object( &device_ops )))
    {
        device->dev = dev;
988
        device->removable = is_device_removable( dev, unix_fd );
989 990 991 992 993 994 995 996 997 998 999 1000 1001
        for (i = 0; i < INODE_HASH_SIZE; i++) list_init( &device->inode_hash[i] );
        list_add_head( &device_hash[hash], &device->entry );
    }
    return device;
}

static void device_dump( struct object *obj, int verbose )
{
    struct device *device = (struct device *)obj;
    fprintf( stderr, "Device dev=" );
    DUMP_LONG_LONG( device->dev );
    fprintf( stderr, "\n" );
}
1002

1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016
static void device_destroy( struct object *obj )
{
    struct device *device = (struct device *)obj;
    unsigned int i;

    for (i = 0; i < INODE_HASH_SIZE; i++)
        assert( list_empty(&device->inode_hash[i]) );

    list_remove( &device->entry );  /* remove it from the hash table */
}


/****************************************************************/
/* inode functions */
1017

1018
/* close all pending file descriptors in the closed list */
1019
static void inode_close_pending( struct inode *inode, int keep_unlinks )
1020
{
1021 1022 1023
    struct list *ptr = list_head( &inode->closed );

    while (ptr)
1024
    {
1025 1026 1027
        struct closed_fd *fd = LIST_ENTRY( ptr, struct closed_fd, entry );
        struct list *next = list_next( &inode->closed, ptr );

1028
        if (fd->unix_fd != -1)
1029
        {
1030 1031
            close( fd->unix_fd );
            fd->unix_fd = -1;
1032
        }
1033
        if (!keep_unlinks || !fd->unlink[0])  /* get rid of it unless there's an unlink pending on that file */
1034 1035 1036 1037 1038
        {
            list_remove( ptr );
            free( fd );
        }
        ptr = next;
1039 1040 1041
    }
}

1042 1043 1044
static void inode_dump( struct object *obj, int verbose )
{
    struct inode *inode = (struct inode *)obj;
1045
    fprintf( stderr, "Inode device=%p ino=", inode->device );
1046 1047 1048 1049 1050 1051 1052
    DUMP_LONG_LONG( inode->ino );
    fprintf( stderr, "\n" );
}

static void inode_destroy( struct object *obj )
{
    struct inode *inode = (struct inode *)obj;
1053
    struct list *ptr;
1054

1055 1056
    assert( list_empty(&inode->open) );
    assert( list_empty(&inode->locks) );
1057 1058

    list_remove( &inode->entry );
1059 1060 1061 1062 1063

    while ((ptr = list_head( &inode->closed )))
    {
        struct closed_fd *fd = LIST_ENTRY( ptr, struct closed_fd, entry );
        list_remove( ptr );
1064
        if (fd->unix_fd != -1) close( fd->unix_fd );
1065 1066 1067 1068
        if (fd->unlink[0])
        {
            /* make sure it is still the same file */
            struct stat st;
1069
            if (!stat( fd->unlink, &st ) && st.st_dev == inode->device->dev && st.st_ino == inode->ino)
1070 1071 1072 1073
            {
                if (S_ISDIR(st.st_mode)) rmdir( fd->unlink );
                else unlink( fd->unlink );
            }
1074 1075 1076
        }
        free( fd );
    }
1077
    release_object( inode->device );
1078 1079 1080
}

/* retrieve the inode object for a given fd, creating it if needed */
1081
static struct inode *get_inode( dev_t dev, ino_t ino, int unix_fd )
1082
{
1083
    struct device *device;
1084
    struct inode *inode;
1085
    unsigned int hash = ino % INODE_HASH_SIZE;
1086

1087
    if (!(device = get_device( dev, unix_fd ))) return NULL;
1088 1089

    LIST_FOR_EACH_ENTRY( inode, &device->inode_hash[hash], struct inode, entry )
1090
    {
1091
        if (inode->ino == ino)
1092
        {
1093 1094
            release_object( device );
            return (struct inode *)grab_object( inode );
1095 1096 1097 1098 1099 1100
        }
    }

    /* not found, create it */
    if ((inode = alloc_object( &inode_ops )))
    {
1101
        inode->device = device;
1102 1103
        inode->ino    = ino;
        list_init( &inode->open );
1104
        list_init( &inode->locks );
1105
        list_init( &inode->closed );
1106
        list_add_head( &device->inode_hash[hash], &inode->entry );
1107
    }
1108 1109
    else release_object( device );

1110 1111 1112
    return inode;
}

1113
/* add fd to the inode list of file descriptors to close */
1114 1115
static void inode_add_closed_fd( struct inode *inode, struct closed_fd *fd )
{
1116 1117
    if (!list_empty( &inode->locks ))
    {
1118
        list_add_head( &inode->closed, &fd->entry );
1119
    }
1120 1121
    else if (fd->unlink[0])  /* close the fd but keep the structure around for unlink */
    {
1122 1123
        if (fd->unix_fd != -1) close( fd->unix_fd );
        fd->unix_fd = -1;
1124 1125 1126
        list_add_head( &inode->closed, &fd->entry );
    }
    else  /* no locks on this inode and no unlink, get rid of the fd */
1127
    {
1128
        if (fd->unix_fd != -1) close( fd->unix_fd );
1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155
        free( fd );
    }
}


/****************************************************************/
/* file lock functions */

static void file_lock_dump( struct object *obj, int verbose )
{
    struct file_lock *lock = (struct file_lock *)obj;
    fprintf( stderr, "Lock %s fd=%p proc=%p start=",
             lock->shared ? "shared" : "excl", lock->fd, lock->process );
    DUMP_LONG_LONG( lock->start );
    fprintf( stderr, " end=" );
    DUMP_LONG_LONG( lock->end );
    fprintf( stderr, "\n" );
}

static int file_lock_signaled( struct object *obj, struct thread *thread )
{
    struct file_lock *lock = (struct file_lock *)obj;
    /* lock is signaled if it has lost its owner */
    return !lock->process;
}

/* set (or remove) a Unix lock if possible for the given range */
1156
static int set_unix_lock( struct fd *fd, file_pos_t start, file_pos_t end, int type )
1157 1158 1159
{
    struct flock fl;

1160
    if (!fd->fs_locks) return 1;  /* no fs locks possible for this fd */
1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173
    for (;;)
    {
        if (start == end) return 1;  /* can't set zero-byte lock */
        if (start > max_unix_offset) return 1;  /* ignore it */
        fl.l_type   = type;
        fl.l_whence = SEEK_SET;
        fl.l_start  = start;
        if (!end || end > max_unix_offset) fl.l_len = 0;
        else fl.l_len = end - start;
        if (fcntl( fd->unix_fd, F_SETLK, &fl ) != -1) return 1;

        switch(errno)
        {
1174 1175 1176 1177 1178 1179 1180 1181
        case EACCES:
            /* check whether locks work at all on this file system */
            if (fcntl( fd->unix_fd, F_GETLK, &fl ) != -1)
            {
                set_error( STATUS_FILE_LOCK_CONFLICT );
                return 0;
            }
            /* fall through */
1182 1183 1184
        case EIO:
        case ENOLCK:
            /* no locking on this fs, just ignore it */
1185
            fd->fs_locks = 0;
1186
            return 1;
1187 1188 1189
        case EAGAIN:
            set_error( STATUS_FILE_LOCK_CONFLICT );
            return 0;
1190 1191 1192 1193 1194 1195
        case EBADF:
            /* this can happen if we try to set a write lock on a read-only file */
            /* we just ignore that error */
            if (fl.l_type == F_WRLCK) return 1;
            set_error( STATUS_ACCESS_DENIED );
            return 0;
1196
#ifdef EOVERFLOW
1197
        case EOVERFLOW:
1198
#endif
1199
        case EINVAL:
1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215
            /* this can happen if off_t is 64-bit but the kernel only supports 32-bit */
            /* in that case we shrink the limit and retry */
            if (max_unix_offset > INT_MAX)
            {
                max_unix_offset = INT_MAX;
                break;  /* retry */
            }
            /* fall through */
        default:
            file_set_error();
            return 0;
        }
    }
}

/* check if interval [start;end) overlaps the lock */
1216
static inline int lock_overlaps( struct file_lock *lock, file_pos_t start, file_pos_t end )
1217 1218 1219 1220 1221 1222 1223
{
    if (lock->end && start >= lock->end) return 0;
    if (end && lock->start >= end) return 0;
    return 1;
}

/* remove Unix locks for all bytes in the specified area that are no longer locked */
1224
static void remove_unix_locks( struct fd *fd, file_pos_t start, file_pos_t end )
1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237
{
    struct hole
    {
        struct hole *next;
        struct hole *prev;
        file_pos_t   start;
        file_pos_t   end;
    } *first, *cur, *next, *buffer;

    struct list *ptr;
    int count = 0;

    if (!fd->inode) return;
1238
    if (!fd->fs_locks) return;
1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355
    if (start == end || start > max_unix_offset) return;
    if (!end || end > max_unix_offset) end = max_unix_offset + 1;

    /* count the number of locks overlapping the specified area */

    LIST_FOR_EACH( ptr, &fd->inode->locks )
    {
        struct file_lock *lock = LIST_ENTRY( ptr, struct file_lock, inode_entry );
        if (lock->start == lock->end) continue;
        if (lock_overlaps( lock, start, end )) count++;
    }

    if (!count)  /* no locks at all, we can unlock everything */
    {
        set_unix_lock( fd, start, end, F_UNLCK );
        return;
    }

    /* allocate space for the list of holes */
    /* max. number of holes is number of locks + 1 */

    if (!(buffer = malloc( sizeof(*buffer) * (count+1) ))) return;
    first = buffer;
    first->next  = NULL;
    first->prev  = NULL;
    first->start = start;
    first->end   = end;
    next = first + 1;

    /* build a sorted list of unlocked holes in the specified area */

    LIST_FOR_EACH( ptr, &fd->inode->locks )
    {
        struct file_lock *lock = LIST_ENTRY( ptr, struct file_lock, inode_entry );
        if (lock->start == lock->end) continue;
        if (!lock_overlaps( lock, start, end )) continue;

        /* go through all the holes touched by this lock */
        for (cur = first; cur; cur = cur->next)
        {
            if (cur->end <= lock->start) continue; /* hole is before start of lock */
            if (lock->end && cur->start >= lock->end) break;  /* hole is after end of lock */

            /* now we know that lock is overlapping hole */

            if (cur->start >= lock->start)  /* lock starts before hole, shrink from start */
            {
                cur->start = lock->end;
                if (cur->start && cur->start < cur->end) break;  /* done with this lock */
                /* now hole is empty, remove it */
                if (cur->next) cur->next->prev = cur->prev;
                if (cur->prev) cur->prev->next = cur->next;
                else if (!(first = cur->next)) goto done;  /* no more holes at all */
            }
            else if (!lock->end || cur->end <= lock->end)  /* lock larger than hole, shrink from end */
            {
                cur->end = lock->start;
                assert( cur->start < cur->end );
            }
            else  /* lock is in the middle of hole, split hole in two */
            {
                next->prev = cur;
                next->next = cur->next;
                cur->next = next;
                next->start = lock->end;
                next->end = cur->end;
                cur->end = lock->start;
                assert( next->start < next->end );
                assert( cur->end < next->start );
                next++;
                break;  /* done with this lock */
            }
        }
    }

    /* clear Unix locks for all the holes */

    for (cur = first; cur; cur = cur->next)
        set_unix_lock( fd, cur->start, cur->end, F_UNLCK );

 done:
    free( buffer );
}

/* create a new lock on a fd */
static struct file_lock *add_lock( struct fd *fd, int shared, file_pos_t start, file_pos_t end )
{
    struct file_lock *lock;

    if (!(lock = alloc_object( &file_lock_ops ))) return NULL;
    lock->shared  = shared;
    lock->start   = start;
    lock->end     = end;
    lock->fd      = fd;
    lock->process = current->process;

    /* now try to set a Unix lock */
    if (!set_unix_lock( lock->fd, lock->start, lock->end, lock->shared ? F_RDLCK : F_WRLCK ))
    {
        release_object( lock );
        return NULL;
    }
    list_add_head( &fd->locks, &lock->fd_entry );
    list_add_head( &fd->inode->locks, &lock->inode_entry );
    list_add_head( &lock->process->locks, &lock->proc_entry );
    return lock;
}

/* remove an existing lock */
static void remove_lock( struct file_lock *lock, int remove_unix )
{
    struct inode *inode = lock->fd->inode;

    list_remove( &lock->fd_entry );
    list_remove( &lock->inode_entry );
    list_remove( &lock->proc_entry );
    if (remove_unix) remove_unix_locks( lock->fd, lock->start, lock->end );
1356
    if (list_empty( &inode->locks )) inode_close_pending( inode, 1 );
1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396
    lock->process = NULL;
    wake_up( &lock->obj, 0 );
    release_object( lock );
}

/* remove all locks owned by a given process */
void remove_process_locks( struct process *process )
{
    struct list *ptr;

    while ((ptr = list_head( &process->locks )))
    {
        struct file_lock *lock = LIST_ENTRY( ptr, struct file_lock, proc_entry );
        remove_lock( lock, 1 );  /* this removes it from the list */
    }
}

/* remove all locks on a given fd */
static void remove_fd_locks( struct fd *fd )
{
    file_pos_t start = FILE_POS_T_MAX, end = 0;
    struct list *ptr;

    while ((ptr = list_head( &fd->locks )))
    {
        struct file_lock *lock = LIST_ENTRY( ptr, struct file_lock, fd_entry );
        if (lock->start < start) start = lock->start;
        if (!lock->end || lock->end > end) end = lock->end - 1;
        remove_lock( lock, 0 );
    }
    if (start < end) remove_unix_locks( fd, start, end + 1 );
}

/* add a lock on an fd */
/* returns handle to wait on */
obj_handle_t lock_fd( struct fd *fd, file_pos_t start, file_pos_t count, int shared, int wait )
{
    struct list *ptr;
    file_pos_t end = start + count;

1397 1398 1399 1400 1401 1402
    if (!fd->inode)  /* not a regular file */
    {
        set_error( STATUS_INVALID_DEVICE_REQUEST );
        return 0;
    }

1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452
    /* don't allow wrapping locks */
    if (end && end < start)
    {
        set_error( STATUS_INVALID_PARAMETER );
        return 0;
    }

    /* check if another lock on that file overlaps the area */
    LIST_FOR_EACH( ptr, &fd->inode->locks )
    {
        struct file_lock *lock = LIST_ENTRY( ptr, struct file_lock, inode_entry );
        if (!lock_overlaps( lock, start, end )) continue;
        if (lock->shared && shared) continue;
        /* found one */
        if (!wait)
        {
            set_error( STATUS_FILE_LOCK_CONFLICT );
            return 0;
        }
        set_error( STATUS_PENDING );
        return alloc_handle( current->process, lock, SYNCHRONIZE, 0 );
    }

    /* not found, add it */
    if (add_lock( fd, shared, start, end )) return 0;
    if (get_error() == STATUS_FILE_LOCK_CONFLICT)
    {
        /* Unix lock conflict -> tell client to wait and retry */
        if (wait) set_error( STATUS_PENDING );
    }
    return 0;
}

/* remove a lock on an fd */
void unlock_fd( struct fd *fd, file_pos_t start, file_pos_t count )
{
    struct list *ptr;
    file_pos_t end = start + count;

    /* find an existing lock with the exact same parameters */
    LIST_FOR_EACH( ptr, &fd->locks )
    {
        struct file_lock *lock = LIST_ENTRY( ptr, struct file_lock, fd_entry );
        if ((lock->start == start) && (lock->end == end))
        {
            remove_lock( lock, 1 );
            return;
        }
    }
    set_error( STATUS_FILE_LOCK_CONFLICT );
1453 1454 1455
}


1456 1457 1458
/****************************************************************/
/* file descriptor functions */

1459 1460 1461
static void fd_dump( struct object *obj, int verbose )
{
    struct fd *fd = (struct fd *)obj;
1462
    fprintf( stderr, "Fd unix_fd=%d user=%p options=%08x", fd->unix_fd, fd->user, fd->options );
1463 1464
    if (fd->inode) fprintf( stderr, " inode=%p unlink='%s'", fd->inode, fd->closed->unlink );
    fprintf( stderr, "\n" );
1465 1466 1467 1468 1469
}

static void fd_destroy( struct object *obj )
{
    struct fd *fd = (struct fd *)obj;
1470

1471 1472 1473
    free_async_queue( fd->read_q );
    free_async_queue( fd->write_q );
    free_async_queue( fd->wait_q );
1474

1475
    if (fd->completion) release_object( fd->completion );
1476
    remove_fd_locks( fd );
1477
    free( fd->unix_name );
1478
    list_remove( &fd->inode_entry );
1479
    if (fd->poll_index != -1) remove_poll_user( fd, fd->poll_index );
1480 1481 1482 1483 1484 1485 1486 1487 1488
    if (fd->inode)
    {
        inode_add_closed_fd( fd->inode, fd->closed );
        release_object( fd->inode );
    }
    else  /* no inode, close it right away */
    {
        if (fd->unix_fd != -1) close( fd->unix_fd );
    }
1489 1490
}

1491 1492 1493 1494 1495
/* set the events that select waits for on this fd */
void set_fd_events( struct fd *fd, int events )
{
    int user = fd->poll_index;
    assert( poll_users[user] == fd );
1496 1497 1498

    set_fd_epoll_events( fd, user, events );

1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511
    if (events == -1)  /* stop waiting on this fd completely */
    {
        pollfd[user].fd = -1;
        pollfd[user].events = POLLERR;
        pollfd[user].revents = 0;
    }
    else if (pollfd[user].fd != -1 || !pollfd[user].events)
    {
        pollfd[user].fd = fd->unix_fd;
        pollfd[user].events = events;
    }
}

1512 1513 1514 1515 1516
/* prepare an fd for unmounting its corresponding device */
static inline void unmount_fd( struct fd *fd )
{
    assert( fd->inode );

1517 1518
    async_wake_up( fd->read_q, STATUS_VOLUME_DISMOUNTED );
    async_wake_up( fd->write_q, STATUS_VOLUME_DISMOUNTED );
1519 1520 1521 1522 1523 1524

    if (fd->poll_index != -1) set_fd_events( fd, -1 );

    if (fd->unix_fd != -1) close( fd->unix_fd );

    fd->unix_fd = -1;
1525
    fd->no_fd_status = STATUS_VOLUME_DISMOUNTED;
1526 1527 1528 1529 1530 1531 1532
    fd->closed->unix_fd = -1;
    fd->closed->unlink[0] = 0;

    /* stop using Unix locks on this fd (existing locks have been removed by close) */
    fd->fs_locks = 0;
}

1533
/* allocate an fd object, without setting the unix fd yet */
1534
static struct fd *alloc_fd_object(void)
1535
{
1536
    struct fd *fd = alloc_object( &fd_ops );
1537

1538 1539
    if (!fd) return NULL;

1540 1541
    fd->fd_ops     = NULL;
    fd->user       = NULL;
1542 1543
    fd->inode      = NULL;
    fd->closed     = NULL;
1544
    fd->access     = 0;
1545
    fd->options    = 0;
1546
    fd->sharing    = 0;
1547
    fd->unix_fd    = -1;
1548
    fd->unix_name  = NULL;
1549
    fd->signaled   = 1;
1550
    fd->fs_locks   = 1;
1551
    fd->poll_index = -1;
1552 1553 1554
    fd->read_q     = NULL;
    fd->write_q    = NULL;
    fd->wait_q     = NULL;
1555
    fd->completion = NULL;
1556
    list_init( &fd->inode_entry );
1557
    list_init( &fd->locks );
1558 1559 1560 1561 1562 1563 1564 1565 1566

    if ((fd->poll_index = add_poll_user( fd )) == -1)
    {
        release_object( fd );
        return NULL;
    }
    return fd;
}

1567
/* allocate a pseudo fd object, for objects that need to behave like files but don't have a unix fd */
1568
struct fd *alloc_pseudo_fd( const struct fd_ops *fd_user_ops, struct object *user, unsigned int options )
1569 1570 1571 1572 1573 1574 1575 1576 1577 1578
{
    struct fd *fd = alloc_object( &fd_ops );

    if (!fd) return NULL;

    fd->fd_ops     = fd_user_ops;
    fd->user       = user;
    fd->inode      = NULL;
    fd->closed     = NULL;
    fd->access     = 0;
1579
    fd->options    = options;
1580
    fd->sharing    = 0;
1581
    fd->unix_name  = NULL;
1582
    fd->unix_fd    = -1;
1583
    fd->signaled   = 0;
1584 1585
    fd->fs_locks   = 0;
    fd->poll_index = -1;
1586 1587 1588
    fd->read_q     = NULL;
    fd->write_q    = NULL;
    fd->wait_q     = NULL;
1589
    fd->completion = NULL;
1590
    fd->no_fd_status = STATUS_BAD_DEVICE_TYPE;
1591 1592 1593 1594 1595
    list_init( &fd->inode_entry );
    list_init( &fd->locks );
    return fd;
}

1596
/* duplicate an fd object for a different user */
1597
struct fd *dup_fd_object( struct fd *orig, unsigned int access, unsigned int sharing, unsigned int options )
1598 1599 1600 1601 1602 1603 1604 1605 1606
{
    struct fd *fd = alloc_object( &fd_ops );

    if (!fd) return NULL;

    fd->fd_ops     = NULL;
    fd->user       = NULL;
    fd->inode      = NULL;
    fd->closed     = NULL;
1607 1608 1609
    fd->access     = access;
    fd->options    = options;
    fd->sharing    = sharing;
1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630
    fd->unix_fd    = -1;
    fd->signaled   = 0;
    fd->fs_locks   = 0;
    fd->poll_index = -1;
    fd->read_q     = NULL;
    fd->write_q    = NULL;
    fd->wait_q     = NULL;
    fd->completion = NULL;
    list_init( &fd->inode_entry );
    list_init( &fd->locks );

    if (!(fd->unix_name = mem_alloc( strlen(orig->unix_name) + 1 ))) goto failed;
    strcpy( fd->unix_name, orig->unix_name );
    if ((fd->poll_index = add_poll_user( fd )) == -1) goto failed;

    if (orig->inode)
    {
        struct closed_fd *closed = mem_alloc( sizeof(*closed) );
        if (!closed) goto failed;
        if ((fd->unix_fd = dup( orig->unix_fd )) == -1)
        {
1631
            file_set_error();
1632 1633 1634 1635 1636 1637 1638 1639 1640
            free( closed );
            goto failed;
        }
        closed->unix_fd = fd->unix_fd;
        closed->unlink[0] = 0;
        fd->closed = closed;
        fd->inode = (struct inode *)grab_object( orig->inode );
        list_add_head( &fd->inode->open, &fd->inode_entry );
    }
1641 1642 1643 1644 1645
    else if ((fd->unix_fd = dup( orig->unix_fd )) == -1)
    {
        file_set_error();
        goto failed;
    }
1646 1647 1648 1649 1650 1651 1652
    return fd;

failed:
    release_object( fd );
    return NULL;
}

1653 1654 1655 1656 1657 1658
/* set the status to return when the fd has no associated unix fd */
void set_no_fd_status( struct fd *fd, unsigned int status )
{
    fd->no_fd_status = status;
}

1659 1660
/* check if the desired access is possible without violating */
/* the sharing mode of other opens of the same file */
1661 1662
static unsigned int check_sharing( struct fd *fd, unsigned int access, unsigned int sharing,
                                   unsigned int open_flags, unsigned int options )
1663
{
1664
    unsigned int existing_sharing = FILE_SHARE_READ | FILE_SHARE_WRITE | FILE_SHARE_DELETE;
1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675
    unsigned int existing_access = 0;
    struct list *ptr;

    fd->access = access;
    fd->sharing = sharing;

    LIST_FOR_EACH( ptr, &fd->inode->open )
    {
        struct fd *fd_ptr = LIST_ENTRY( ptr, struct fd, inode_entry );
        if (fd_ptr != fd)
        {
1676 1677
            /* if access mode is 0, sharing mode is ignored */
            if (fd_ptr->access) existing_sharing &= fd_ptr->sharing;
1678 1679 1680 1681
            existing_access  |= fd_ptr->access;
        }
    }

1682 1683 1684 1685 1686 1687 1688
    if (((access & FILE_UNIX_READ_ACCESS) && !(existing_sharing & FILE_SHARE_READ)) ||
        ((access & FILE_UNIX_WRITE_ACCESS) && !(existing_sharing & FILE_SHARE_WRITE)) ||
        ((access & DELETE) && !(existing_sharing & FILE_SHARE_DELETE)))
        return STATUS_SHARING_VIOLATION;
    if (((existing_access & FILE_MAPPING_WRITE) && !(sharing & FILE_SHARE_WRITE)) ||
        ((existing_access & FILE_MAPPING_IMAGE) && (access & FILE_SHARE_WRITE)))
        return STATUS_SHARING_VIOLATION;
1689 1690
    if ((existing_access & FILE_MAPPING_IMAGE) && (options & FILE_DELETE_ON_CLOSE))
        return STATUS_CANNOT_DELETE;
1691 1692 1693 1694 1695 1696 1697 1698
    if ((existing_access & FILE_MAPPING_ACCESS) && (open_flags & O_TRUNC))
        return STATUS_USER_MAPPED_FILE;
    if (!access) return 0;  /* if access mode is 0, sharing mode is ignored (except for mappings) */
    if (((existing_access & FILE_UNIX_READ_ACCESS) && !(sharing & FILE_SHARE_READ)) ||
        ((existing_access & FILE_UNIX_WRITE_ACCESS) && !(sharing & FILE_SHARE_WRITE)) ||
        ((existing_access & DELETE) && !(sharing & FILE_SHARE_DELETE)))
        return STATUS_SHARING_VIOLATION;
    return 0;
1699 1700
}

1701 1702 1703 1704 1705 1706 1707 1708
/* sets the user of an fd that previously had no user */
void set_fd_user( struct fd *fd, const struct fd_ops *user_ops, struct object *user )
{
    assert( fd->fd_ops == NULL );
    fd->fd_ops = user_ops;
    fd->user   = user;
}

1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727
static char *dup_fd_name( struct fd *root, const char *name )
{
    char *ret;

    if (!root) return strdup( name );
    if (!root->unix_name) return NULL;

    /* skip . prefix */
    if (name[0] == '.' && (!name[1] || name[1] == '/')) name++;

    if ((ret = malloc( strlen(root->unix_name) + strlen(name) + 2 )))
    {
        strcpy( ret, root->unix_name );
        if (name[0] && name[0] != '/') strcat( ret, "/" );
        strcat( ret, name );
    }
    return ret;
}

1728
/* open() wrapper that returns a struct fd with no fd user set */
1729
struct fd *open_fd( struct fd *root, const char *name, int flags, mode_t *mode, unsigned int access,
1730
                    unsigned int sharing, unsigned int options )
1731 1732 1733
{
    struct stat st;
    struct closed_fd *closed_fd;
1734
    struct fd *fd;
1735
    const char *unlink_name = "";
1736
    int root_fd = -1;
1737
    int rw_mode;
1738

1739 1740
    if (((options & FILE_DELETE_ON_CLOSE) && !(access & DELETE)) ||
        ((options & FILE_DIRECTORY_FILE) && (flags & O_TRUNC)))
1741 1742 1743 1744 1745
    {
        set_error( STATUS_INVALID_PARAMETER );
        return NULL;
    }

1746
    if (!(fd = alloc_fd_object())) return NULL;
1747

1748
    fd->options = options;
1749
    if (options & FILE_DELETE_ON_CLOSE) unlink_name = name;
1750
    if (!(closed_fd = mem_alloc( sizeof(*closed_fd) + strlen(unlink_name) )))
1751 1752 1753 1754
    {
        release_object( fd );
        return NULL;
    }
1755

1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766
    if (root)
    {
        if ((root_fd = get_unix_fd( root )) == -1) goto error;
        if (fchdir( root_fd ) == -1)
        {
            file_set_error();
            root_fd = -1;
            goto error;
        }
    }

1767 1768 1769 1770 1771 1772 1773 1774
    /* create the directory if needed */
    if ((options & FILE_DIRECTORY_FILE) && (flags & O_CREAT))
    {
        if (mkdir( name, 0777 ) == -1)
        {
            if (errno != EEXIST || (flags & O_EXCL))
            {
                file_set_error();
1775
                goto error;
1776 1777 1778 1779
            }
        }
        flags &= ~(O_CREAT | O_EXCL | O_TRUNC);
    }
1780 1781 1782 1783 1784 1785 1786 1787

    if ((access & FILE_UNIX_WRITE_ACCESS) && !(options & FILE_DIRECTORY_FILE))
    {
        if (access & FILE_UNIX_READ_ACCESS) rw_mode = O_RDWR;
        else rw_mode = O_WRONLY;
    }
    else rw_mode = O_RDONLY;

1788
    fd->unix_name = dup_fd_name( root, name );
1789

1790
    if ((fd->unix_fd = open( name, rw_mode | (flags & ~O_TRUNC), *mode )) == -1)
1791
    {
1792
        /* if we tried to open a directory for write access, retry read-only */
1793 1794 1795 1796 1797 1798 1799
        if (errno == EISDIR)
        {
            if ((access & FILE_UNIX_WRITE_ACCESS) || (flags & O_CREAT))
                fd->unix_fd = open( name, O_RDONLY | (flags & ~(O_TRUNC | O_CREAT | O_EXCL)), *mode );
        }

        if (fd->unix_fd == -1)
1800 1801 1802 1803
        {
            file_set_error();
            goto error;
        }
1804
    }
1805

1806
    closed_fd->unix_fd = fd->unix_fd;
1807
    closed_fd->unlink[0] = 0;
1808 1809 1810
    fstat( fd->unix_fd, &st );
    *mode = st.st_mode;

1811 1812
    /* only bother with an inode for normal files and directories */
    if (S_ISREG(st.st_mode) || S_ISDIR(st.st_mode))
1813
    {
1814
        unsigned int err;
1815
        struct inode *inode = get_inode( st.st_dev, st.st_ino, fd->unix_fd );
1816 1817 1818 1819 1820 1821

        if (!inode)
        {
            /* we can close the fd because there are no others open on the same file,
             * otherwise we wouldn't have failed to allocate a new inode
             */
1822
            goto error;
1823 1824 1825 1826
        }
        fd->inode = inode;
        fd->closed = closed_fd;
        list_add_head( &inode->open, &fd->inode_entry );
1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840

        /* check directory options */
        if ((options & FILE_DIRECTORY_FILE) && !S_ISDIR(st.st_mode))
        {
            release_object( fd );
            set_error( STATUS_NOT_A_DIRECTORY );
            return NULL;
        }
        if ((options & FILE_NON_DIRECTORY_FILE) && S_ISDIR(st.st_mode))
        {
            release_object( fd );
            set_error( STATUS_FILE_IS_A_DIRECTORY );
            return NULL;
        }
1841
        if ((err = check_sharing( fd, access, sharing, flags, options )))
1842 1843
        {
            release_object( fd );
1844
            set_error( err );
1845 1846
            return NULL;
        }
1847
        strcpy( closed_fd->unlink, unlink_name );
1848 1849 1850 1851 1852 1853 1854 1855 1856 1857
        if (flags & O_TRUNC)
        {
            if (S_ISDIR(st.st_mode))
            {
                release_object( fd );
                set_error( STATUS_OBJECT_NAME_COLLISION );
                return NULL;
            }
            ftruncate( fd->unix_fd, 0 );
        }
1858
    }
1859
    else  /* special file */
1860
    {
1861 1862 1863 1864 1865
        if (options & FILE_DIRECTORY_FILE)
        {
            set_error( STATUS_NOT_A_DIRECTORY );
            goto error;
        }
1866 1867 1868
        if (unlink_name[0])  /* we can't unlink special files */
        {
            set_error( STATUS_INVALID_PARAMETER );
1869
            goto error;
1870
        }
1871
        free( closed_fd );
1872
    }
1873
    return fd;
1874 1875 1876 1877

error:
    release_object( fd );
    free( closed_fd );
1878
    if (root_fd != -1) fchdir( server_dir_fd ); /* go back to the server dir */
1879
    return NULL;
1880 1881
}

1882 1883
/* create an fd for an anonymous file */
/* if the function fails the unix fd is closed */
1884 1885
struct fd *create_anonymous_fd( const struct fd_ops *fd_user_ops, int unix_fd, struct object *user,
                                unsigned int options )
1886
{
1887
    struct fd *fd = alloc_fd_object();
1888 1889 1890

    if (fd)
    {
1891
        set_fd_user( fd, fd_user_ops, user );
1892
        fd->unix_fd = unix_fd;
1893
        fd->options = options;
1894 1895 1896 1897 1898 1899
        return fd;
    }
    close( unix_fd );
    return NULL;
}

1900 1901
/* retrieve the object that is using an fd */
void *get_fd_user( struct fd *fd )
1902
{
1903 1904
    return fd->user;
}
1905

1906 1907 1908 1909 1910 1911
/* retrieve the opening options for the fd */
unsigned int get_fd_options( struct fd *fd )
{
    return fd->options;
}

1912 1913 1914
/* retrieve the unix fd for an object */
int get_unix_fd( struct fd *fd )
{
1915
    if (fd->unix_fd == -1) set_error( fd->no_fd_status );
1916
    return fd->unix_fd;
1917 1918
}

1919 1920 1921 1922 1923 1924
/* check if two file descriptors point to the same file */
int is_same_file_fd( struct fd *fd1, struct fd *fd2 )
{
    return fd1->inode == fd2->inode;
}

1925 1926 1927 1928 1929 1930
/* check if fd is on a removable device */
int is_fd_removable( struct fd *fd )
{
    return (fd->inode && fd->inode->device->removable);
}

1931 1932 1933 1934 1935 1936 1937
/* set or clear the fd signaled state */
void set_fd_signaled( struct fd *fd, int signaled )
{
    fd->signaled = signaled;
    if (signaled) wake_up( fd->user, 0 );
}

1938 1939 1940 1941 1942 1943
/* set or clear the fd signaled state */
int is_fd_signaled( struct fd *fd )
{
    return fd->signaled;
}

1944 1945 1946 1947 1948 1949
/* handler for close_handle that refuses to close fd-associated handles in other processes */
int fd_close_handle( struct object *obj, struct process *process, obj_handle_t handle )
{
    return (!current || current->process == process);
}

1950 1951 1952 1953 1954
/* check if events are pending and if yes return which one(s) */
int check_fd_events( struct fd *fd, int events )
{
    struct pollfd pfd;

1955
    if (fd->unix_fd == -1) return POLLERR;
1956
    if (fd->inode) return events;  /* regular files are always signaled */
1957

1958 1959 1960 1961
    pfd.fd     = fd->unix_fd;
    pfd.events = events;
    if (poll( &pfd, 1, 0 ) <= 0) return 0;
    return pfd.revents;
1962 1963 1964 1965 1966
}

/* default signaled() routine for objects that poll() on an fd */
int default_fd_signaled( struct object *obj, struct thread *thread )
{
1967
    struct fd *fd = get_obj_fd( obj );
1968
    int ret = fd->signaled;
1969 1970
    release_object( fd );
    return ret;
1971 1972
}

1973 1974 1975 1976 1977 1978 1979 1980 1981 1982
/* default map_access() routine for objects that behave like an fd */
unsigned int default_fd_map_access( struct object *obj, unsigned int access )
{
    if (access & GENERIC_READ)    access |= FILE_GENERIC_READ;
    if (access & GENERIC_WRITE)   access |= FILE_GENERIC_WRITE;
    if (access & GENERIC_EXECUTE) access |= FILE_GENERIC_EXECUTE;
    if (access & GENERIC_ALL)     access |= FILE_ALL_ACCESS;
    return access & ~(GENERIC_READ | GENERIC_WRITE | GENERIC_EXECUTE | GENERIC_ALL);
}

1983 1984 1985 1986
int default_fd_get_poll_events( struct fd *fd )
{
    int events = 0;

1987 1988
    if (async_waiting( fd->read_q )) events |= POLLIN;
    if (async_waiting( fd->write_q )) events |= POLLOUT;
1989 1990 1991
    return events;
}

1992 1993 1994
/* default handler for poll() events */
void default_poll_event( struct fd *fd, int event )
{
1995 1996
    if (event & (POLLIN | POLLERR | POLLHUP)) async_wake_up( fd->read_q, STATUS_ALERTED );
    if (event & (POLLOUT | POLLERR | POLLHUP)) async_wake_up( fd->write_q, STATUS_ALERTED );
1997 1998

    /* if an error occurred, stop polling this fd to avoid busy-looping */
1999
    if (event & (POLLERR | POLLHUP)) set_fd_events( fd, -1 );
2000
    else if (!fd->inode) set_fd_events( fd, fd->fd_ops->get_poll_events( fd ) );
2001 2002
}

2003
struct async *fd_queue_async( struct fd *fd, const async_data_t *data, int type )
2004
{
2005
    struct async_queue *queue;
2006
    struct async *async;
2007 2008 2009 2010

    switch (type)
    {
    case ASYNC_TYPE_READ:
2011
        if (!fd->read_q && !(fd->read_q = create_async_queue( fd ))) return NULL;
2012
        queue = fd->read_q;
2013 2014
        break;
    case ASYNC_TYPE_WRITE:
2015
        if (!fd->write_q && !(fd->write_q = create_async_queue( fd ))) return NULL;
2016
        queue = fd->write_q;
2017
        break;
2018
    case ASYNC_TYPE_WAIT:
2019
        if (!fd->wait_q && !(fd->wait_q = create_async_queue( fd ))) return NULL;
2020
        queue = fd->wait_q;
2021
        break;
2022
    default:
2023
        queue = NULL;
2024
        assert(0);
2025 2026
    }

2027
    if ((async = create_async( current, queue, data )) && type != ASYNC_TYPE_WAIT)
2028 2029 2030 2031
    {
        if (!fd->inode)
            set_fd_events( fd, fd->fd_ops->get_poll_events( fd ) );
        else  /* regular files are always ready for read and write */
2032
            async_wake_up( queue, STATUS_ALERTED );
2033 2034
    }
    return async;
2035 2036
}

2037
void fd_async_wake_up( struct fd *fd, int type, unsigned int status )
2038 2039 2040 2041
{
    switch (type)
    {
    case ASYNC_TYPE_READ:
2042
        async_wake_up( fd->read_q, status );
2043 2044
        break;
    case ASYNC_TYPE_WRITE:
2045
        async_wake_up( fd->write_q, status );
2046 2047
        break;
    case ASYNC_TYPE_WAIT:
2048
        async_wake_up( fd->wait_q, status );
2049 2050 2051 2052 2053 2054
        break;
    default:
        assert(0);
    }
}

2055 2056 2057 2058 2059
void fd_reselect_async( struct fd *fd, struct async_queue *queue )
{
    fd->fd_ops->reselect_async( fd, queue );
}

2060 2061 2062 2063 2064
void no_fd_queue_async( struct fd *fd, const async_data_t *data, int type, int count )
{
    set_error( STATUS_OBJECT_TYPE_MISMATCH );
}

2065
void default_fd_queue_async( struct fd *fd, const async_data_t *data, int type, int count )
2066
{
2067
    struct async *async;
2068

2069
    if ((async = fd_queue_async( fd, data, type )))
2070 2071 2072 2073
    {
        release_object( async );
        set_error( STATUS_PENDING );
    }
2074 2075
}

2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088
/* default reselect_async() fd routine */
void default_fd_reselect_async( struct fd *fd, struct async_queue *queue )
{
    if (queue != fd->wait_q)
    {
        int poll_events = fd->fd_ops->get_poll_events( fd );
        int events = check_fd_events( fd, poll_events );
        if (events) fd->fd_ops->poll_event( fd, events );
        else set_fd_events( fd, poll_events );
    }
}

/* default cancel_async() fd routine */
2089
void default_fd_cancel_async( struct fd *fd, struct process *process, struct thread *thread, client_ptr_t iosb )
2090
{
2091 2092 2093 2094 2095 2096 2097
    int n = 0;

    n += async_wake_up_by( fd->read_q, process, thread, iosb, STATUS_CANCELLED );
    n += async_wake_up_by( fd->write_q, process, thread, iosb, STATUS_CANCELLED );
    n += async_wake_up_by( fd->wait_q, process, thread, iosb, STATUS_CANCELLED );
    if (!n && iosb)
        set_error( STATUS_NOT_FOUND );
2098 2099
}

2100
/* default flush() routine */
2101
void no_flush( struct fd *fd, struct event **event )
2102 2103 2104 2105
{
    set_error( STATUS_OBJECT_TYPE_MISMATCH );
}

2106 2107 2108 2109 2110 2111 2112 2113 2114 2115
static inline int is_valid_mounted_device( struct stat *st )
{
#if defined(linux) || defined(__sun__)
    return S_ISBLK( st->st_mode );
#else
    /* disks are char devices on *BSD */
    return S_ISCHR( st->st_mode );
#endif
}

2116
/* close all Unix file descriptors on a device to allow unmounting it */
2117
static void unmount_device( struct fd *device_fd )
2118 2119
{
    unsigned int i;
2120 2121
    struct stat st;
    struct device *device;
2122 2123
    struct inode *inode;
    struct fd *fd;
2124
    int unix_fd = get_unix_fd( device_fd );
2125

2126 2127
    if (unix_fd == -1) return;

2128
    if (fstat( unix_fd, &st ) == -1 || !is_valid_mounted_device( &st ))
2129 2130 2131 2132 2133
    {
        set_error( STATUS_INVALID_PARAMETER );
        return;
    }

2134
    if (!(device = get_device( st.st_rdev, -1 ))) return;
2135

2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149
    for (i = 0; i < INODE_HASH_SIZE; i++)
    {
        LIST_FOR_EACH_ENTRY( inode, &device->inode_hash[i], struct inode, entry )
        {
            LIST_FOR_EACH_ENTRY( fd, &inode->open, struct fd, inode_entry )
            {
                unmount_fd( fd );
            }
            inode_close_pending( inode, 0 );
        }
    }
    /* remove it from the hash table */
    list_remove( &device->entry );
    list_init( &device->entry );
2150
    release_object( device );
2151 2152
}

2153 2154 2155 2156 2157 2158 2159
obj_handle_t no_fd_ioctl( struct fd *fd, ioctl_code_t code, const async_data_t *async,
                          int blocking, const void *data, data_size_t size )
{
    set_error( STATUS_OBJECT_TYPE_MISMATCH );
    return 0;
}

2160
/* default ioctl() routine */
2161
obj_handle_t default_fd_ioctl( struct fd *fd, ioctl_code_t code, const async_data_t *async,
2162
                               int blocking, const void *data, data_size_t size )
2163 2164 2165 2166 2167
{
    switch(code)
    {
    case FSCTL_DISMOUNT_VOLUME:
        unmount_device( fd );
2168
        return 0;
2169 2170
    default:
        set_error( STATUS_NOT_SUPPORTED );
2171
        return 0;
2172 2173 2174
    }
}

2175 2176 2177 2178 2179 2180 2181
/* same as get_handle_obj but retrieve the struct fd associated to the object */
static struct fd *get_handle_fd_obj( struct process *process, obj_handle_t handle,
                                     unsigned int access )
{
    struct fd *fd = NULL;
    struct object *obj;

2182
    if ((obj = get_handle_obj( process, handle, access, NULL )))
2183
    {
2184
        fd = get_obj_fd( obj );
2185 2186 2187 2188 2189
        release_object( obj );
    }
    return fd;
}

2190
struct completion *fd_get_completion( struct fd *fd, apc_param_t *p_key )
2191
{
2192
    *p_key = fd->comp_key;
2193 2194 2195 2196 2197 2198 2199
    return fd->completion ? (struct completion *)grab_object( fd->completion ) : NULL;
}

void fd_copy_completion( struct fd *src, struct fd *dst )
{
    assert( !dst->completion );
    dst->completion = fd_get_completion( src, &dst->comp_key );
2200 2201
}

2202 2203 2204 2205
/* flush a file buffers */
DECL_HANDLER(flush_file)
{
    struct fd *fd = get_handle_fd_obj( current->process, req->handle, 0 );
2206
    struct event * event = NULL;
2207 2208 2209

    if (fd)
    {
2210
        fd->fd_ops->flush( fd, &event );
2211
        if ( event )
2212 2213 2214
        {
            reply->event = alloc_handle( current->process, event, SYNCHRONIZE, 0 );
        }
2215 2216 2217 2218
        release_object( fd );
    }
}

2219 2220 2221 2222 2223
/* open a file object */
DECL_HANDLER(open_file_object)
{
    struct unicode_str name;
    struct directory *root = NULL;
2224
    struct object *obj, *result;
2225 2226 2227 2228 2229 2230 2231

    get_req_unicode_str( &name );
    if (req->rootdir && !(root = get_directory_obj( current->process, req->rootdir, 0 )))
        return;

    if ((obj = open_object_dir( root, &name, req->attributes, NULL )))
    {
2232
        if ((result = obj->ops->open_file( obj, req->access, req->sharing, req->options )))
2233
        {
2234 2235
            reply->handle = alloc_handle( current->process, result, req->access, req->attributes );
            release_object( result );
2236 2237 2238 2239 2240 2241 2242
        }
        release_object( obj );
    }

    if (root) release_object( root );
}

2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260
/* get the Unix name from a file handle */
DECL_HANDLER(get_handle_unix_name)
{
    struct fd *fd;

    if ((fd = get_handle_fd_obj( current->process, req->handle, 0 )))
    {
        if (fd->unix_name)
        {
            data_size_t name_len = strlen( fd->unix_name );
            reply->name_len = name_len;
            if (name_len <= get_reply_max_size()) set_reply_data( fd->unix_name, name_len );
            else set_error( STATUS_BUFFER_OVERFLOW );
        }
        release_object( fd );
    }
}

2261 2262 2263 2264 2265
/* get a Unix fd to access a file */
DECL_HANDLER(get_handle_fd)
{
    struct fd *fd;

2266
    if ((fd = get_handle_fd_obj( current->process, req->handle, 0 )))
2267
    {
2268 2269
        int unix_fd = get_unix_fd( fd );
        if (unix_fd != -1)
2270
        {
2271 2272 2273 2274
            reply->type = fd->fd_ops->get_fd_type( fd );
            reply->removable = is_fd_removable(fd);
            reply->options = fd->options;
            reply->access = get_handle_access( current->process, req->handle );
2275
            send_client_fd( current->process, unix_fd, req->handle );
2276
        }
2277 2278 2279 2280
        release_object( fd );
    }
}

2281 2282 2283 2284
/* perform an ioctl on a file */
DECL_HANDLER(ioctl)
{
    unsigned int access = (req->code >> 14) & (FILE_READ_DATA|FILE_WRITE_DATA);
2285
    struct fd *fd = get_handle_fd_obj( current->process, req->async.handle, access );
2286 2287 2288

    if (fd)
    {
2289
        reply->wait = fd->fd_ops->ioctl( fd, req->code, &req->async, req->blocking,
2290 2291
                                         get_req_data(), get_req_data_size() );
        reply->options = fd->options;
2292 2293 2294 2295
        release_object( fd );
    }
}

2296 2297 2298
/* create / reschedule an async I/O */
DECL_HANDLER(register_async)
{
2299 2300
    unsigned int access;
    struct fd *fd;
2301

2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313
    switch(req->type)
    {
    case ASYNC_TYPE_READ:
        access = FILE_READ_DATA;
        break;
    case ASYNC_TYPE_WRITE:
        access = FILE_WRITE_DATA;
        break;
    default:
        set_error( STATUS_INVALID_PARAMETER );
        return;
    }
2314

2315
    if ((fd = get_handle_fd_obj( current->process, req->async.handle, access )))
2316
    {
2317
        if (get_unix_fd( fd ) != -1) fd->fd_ops->queue_async( fd, &req->async, req->type, req->count );
2318 2319 2320
        release_object( fd );
    }
}
2321 2322 2323 2324 2325

/* cancels all async I/O */
DECL_HANDLER(cancel_async)
{
    struct fd *fd = get_handle_fd_obj( current->process, req->handle, 0 );
2326
    struct thread *thread = req->only_thread ? current : NULL;
2327

2328 2329
    if (fd)
    {
2330
        if (get_unix_fd( fd ) != -1) fd->fd_ops->cancel_async( fd, current->process, thread, req->iosb );
2331
        release_object( fd );
2332
    }
2333
}
2334 2335 2336 2337 2338 2339 2340 2341

/* attach completion object to a fd */
DECL_HANDLER(set_completion_info)
{
    struct fd *fd = get_handle_fd_obj( current->process, req->handle, 0 );

    if (fd)
    {
2342
        if (!(fd->options & (FILE_SYNCHRONOUS_IO_ALERT | FILE_SYNCHRONOUS_IO_NONALERT)) && !fd->completion)
2343 2344 2345 2346 2347 2348 2349 2350
        {
            fd->completion = get_completion_obj( current->process, req->chandle, IO_COMPLETION_MODIFY_STATE );
            fd->comp_key = req->ckey;
        }
        else set_error( STATUS_INVALID_PARAMETER );
        release_object( fd );
    }
}
2351 2352 2353 2354 2355 2356 2357

/* push new completion msg into a completion queue attached to the fd */
DECL_HANDLER(add_fd_completion)
{
    struct fd *fd = get_handle_fd_obj( current->process, req->handle, 0 );
    if (fd)
    {
2358 2359
        if (fd->completion)
            add_completion( fd->completion, fd->comp_key, req->cvalue, req->status, req->information );
2360 2361 2362
        release_object( fd );
    }
}