1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
/*
* cabinet.h
*
* Copyright 2002 Greg Turner
* Copyright 2005 Gerold Jens Wucherpfennig
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA
*/
#ifndef __WINE_CABINET_H
#define __WINE_CABINET_H
#include <stdarg.h>
#include "windef.h"
#include "winbase.h"
#include "winnt.h"
#include "fdi.h"
#include "fci.h"
/* from msvcrt/sys/stat.h */
#define _S_IWRITE 0x0080
#define _S_IREAD 0x0100
/* from msvcrt/fcntl.h */
#define _O_RDONLY 0
#define _O_WRONLY 1
#define _O_RDWR 2
#define _O_ACCMODE (_O_RDONLY|_O_WRONLY|_O_RDWR)
#define _O_APPEND 0x0008
#define _O_RANDOM 0x0010
#define _O_SEQUENTIAL 0x0020
#define _O_TEMPORARY 0x0040
#define _O_NOINHERIT 0x0080
#define _O_CREAT 0x0100
#define _O_TRUNC 0x0200
#define _O_EXCL 0x0400
#define _O_SHORT_LIVED 0x1000
#define _O_TEXT 0x4000
#define _O_BINARY 0x8000
#define CAB_SPLITMAX (10)
#define CAB_SEARCH_SIZE (32*1024)
typedef unsigned char cab_UBYTE; /* 8 bits */
typedef UINT16 cab_UWORD; /* 16 bits */
typedef UINT32 cab_ULONG; /* 32 bits */
typedef INT32 cab_LONG; /* 32 bits */
typedef UINT32 cab_off_t;
/* number of bits in a ULONG */
#ifndef CHAR_BIT
# define CHAR_BIT (8)
#endif
#define CAB_ULONG_BITS (sizeof(cab_ULONG) * CHAR_BIT)
/* structure offsets */
#define cfhead_Signature (0x00)
#define cfhead_CabinetSize (0x08)
#define cfhead_FileOffset (0x10)
#define cfhead_MinorVersion (0x18)
#define cfhead_MajorVersion (0x19)
#define cfhead_NumFolders (0x1A)
#define cfhead_NumFiles (0x1C)
#define cfhead_Flags (0x1E)
#define cfhead_SetID (0x20)
#define cfhead_CabinetIndex (0x22)
#define cfhead_SIZEOF (0x24)
#define cfheadext_HeaderReserved (0x00)
#define cfheadext_FolderReserved (0x02)
#define cfheadext_DataReserved (0x03)
#define cfheadext_SIZEOF (0x04)
#define cffold_DataOffset (0x00)
#define cffold_NumBlocks (0x04)
#define cffold_CompType (0x06)
#define cffold_SIZEOF (0x08)
#define cffile_UncompressedSize (0x00)
#define cffile_FolderOffset (0x04)
#define cffile_FolderIndex (0x08)
#define cffile_Date (0x0A)
#define cffile_Time (0x0C)
#define cffile_Attribs (0x0E)
#define cffile_SIZEOF (0x10)
#define cfdata_CheckSum (0x00)
#define cfdata_CompressedSize (0x04)
#define cfdata_UncompressedSize (0x06)
#define cfdata_SIZEOF (0x08)
/* flags */
#define cffoldCOMPTYPE_MASK (0x000f)
#define cffoldCOMPTYPE_NONE (0x0000)
#define cffoldCOMPTYPE_MSZIP (0x0001)
#define cffoldCOMPTYPE_QUANTUM (0x0002)
#define cffoldCOMPTYPE_LZX (0x0003)
#define cfheadPREV_CABINET (0x0001)
#define cfheadNEXT_CABINET (0x0002)
#define cfheadRESERVE_PRESENT (0x0004)
#define cffileCONTINUED_FROM_PREV (0xFFFD)
#define cffileCONTINUED_TO_NEXT (0xFFFE)
#define cffileCONTINUED_PREV_AND_NEXT (0xFFFF)
#define cffile_A_RDONLY (0x01)
#define cffile_A_HIDDEN (0x02)
#define cffile_A_SYSTEM (0x04)
#define cffile_A_ARCH (0x20)
#define cffile_A_EXEC (0x40)
#define cffile_A_NAME_IS_UTF (0x80)
/****************************************************************************/
/* our archiver information / state */
/* MSZIP stuff */
#define ZIPWSIZE 0x8000 /* window size */
#define ZIPLBITS 9 /* bits in base literal/length lookup table */
#define ZIPDBITS 6 /* bits in base distance lookup table */
#define ZIPBMAX 16 /* maximum bit length of any code */
#define ZIPN_MAX 288 /* maximum number of codes in any set */
struct Ziphuft {
cab_UBYTE e; /* number of extra bits or operation */
cab_UBYTE b; /* number of bits in this code or subcode */
union {
cab_UWORD n; /* literal, length base, or distance base */
struct Ziphuft *t; /* pointer to next level of table */
} v;
};
struct ZIPstate {
cab_ULONG window_posn; /* current offset within the window */
cab_ULONG bb; /* bit buffer */
cab_ULONG bk; /* bits in bit buffer */
cab_ULONG ll[288+32]; /* literal/length and distance code lengths */
cab_ULONG c[ZIPBMAX+1]; /* bit length count table */
cab_LONG lx[ZIPBMAX+1]; /* memory for l[-1..ZIPBMAX-1] */
struct Ziphuft *u[ZIPBMAX]; /* table stack */
cab_ULONG v[ZIPN_MAX]; /* values in order of bit length */
cab_ULONG x[ZIPBMAX+1]; /* bit offsets, then code stack */
cab_UBYTE *inpos;
};
/* Quantum stuff */
struct QTMmodelsym {
cab_UWORD sym, cumfreq;
};
struct QTMmodel {
int shiftsleft, entries;
struct QTMmodelsym *syms;
cab_UWORD tabloc[256];
};
struct QTMstate {
cab_UBYTE *window; /* the actual decoding window */
cab_ULONG window_size; /* window size (1Kb through 2Mb) */
cab_ULONG actual_size; /* window size when it was first allocated */
cab_ULONG window_posn; /* current offset within the window */
struct QTMmodel model7;
struct QTMmodelsym m7sym[7+1];
struct QTMmodel model4, model5, model6pos, model6len;
struct QTMmodelsym m4sym[0x18 + 1];
struct QTMmodelsym m5sym[0x24 + 1];
struct QTMmodelsym m6psym[0x2a + 1], m6lsym[0x1b + 1];
struct QTMmodel model00, model40, model80, modelC0;
struct QTMmodelsym m00sym[0x40 + 1], m40sym[0x40 + 1];
struct QTMmodelsym m80sym[0x40 + 1], mC0sym[0x40 + 1];
};
/* LZX stuff */
/* some constants defined by the LZX specification */
#define LZX_MIN_MATCH (2)
#define LZX_MAX_MATCH (257)
#define LZX_NUM_CHARS (256)
#define LZX_BLOCKTYPE_INVALID (0) /* also blocktypes 4-7 invalid */
#define LZX_BLOCKTYPE_VERBATIM (1)
#define LZX_BLOCKTYPE_ALIGNED (2)
#define LZX_BLOCKTYPE_UNCOMPRESSED (3)
#define LZX_PRETREE_NUM_ELEMENTS (20)
#define LZX_ALIGNED_NUM_ELEMENTS (8) /* aligned offset tree #elements */
#define LZX_NUM_PRIMARY_LENGTHS (7) /* this one missing from spec! */
#define LZX_NUM_SECONDARY_LENGTHS (249) /* length tree #elements */
/* LZX huffman defines: tweak tablebits as desired */
#define LZX_PRETREE_MAXSYMBOLS (LZX_PRETREE_NUM_ELEMENTS)
#define LZX_PRETREE_TABLEBITS (6)
#define LZX_MAINTREE_MAXSYMBOLS (LZX_NUM_CHARS + 50*8)
#define LZX_MAINTREE_TABLEBITS (12)
#define LZX_LENGTH_MAXSYMBOLS (LZX_NUM_SECONDARY_LENGTHS+1)
#define LZX_LENGTH_TABLEBITS (12)
#define LZX_ALIGNED_MAXSYMBOLS (LZX_ALIGNED_NUM_ELEMENTS)
#define LZX_ALIGNED_TABLEBITS (7)
#define LZX_LENTABLE_SAFETY (64) /* we allow length table decoding overruns */
#define LZX_DECLARE_TABLE(tbl) \
cab_UWORD tbl##_table[(1<<LZX_##tbl##_TABLEBITS) + (LZX_##tbl##_MAXSYMBOLS<<1)];\
cab_UBYTE tbl##_len [LZX_##tbl##_MAXSYMBOLS + LZX_LENTABLE_SAFETY]
struct LZXstate {
cab_UBYTE *window; /* the actual decoding window */
cab_ULONG window_size; /* window size (32Kb through 2Mb) */
cab_ULONG actual_size; /* window size when it was first allocated */
cab_ULONG window_posn; /* current offset within the window */
cab_ULONG R0, R1, R2; /* for the LRU offset system */
cab_UWORD main_elements; /* number of main tree elements */
int header_read; /* have we started decoding at all yet? */
cab_UWORD block_type; /* type of this block */
cab_ULONG block_length; /* uncompressed length of this block */
cab_ULONG block_remaining; /* uncompressed bytes still left to decode */
cab_ULONG frames_read; /* the number of CFDATA blocks processed */
cab_LONG intel_filesize; /* magic header value used for transform */
cab_LONG intel_curpos; /* current offset in transform space */
int intel_started; /* have we seen any translatable data yet? */
LZX_DECLARE_TABLE(PRETREE);
LZX_DECLARE_TABLE(MAINTREE);
LZX_DECLARE_TABLE(LENGTH);
LZX_DECLARE_TABLE(ALIGNED);
};
struct lzx_bits {
cab_ULONG bb;
int bl;
cab_UBYTE *ip;
};
/* CAB data blocks are <= 32768 bytes in uncompressed form. Uncompressed
* blocks have zero growth. MSZIP guarantees that it won't grow above
* uncompressed size by more than 12 bytes. LZX guarantees it won't grow
* more than 6144 bytes.
*/
#define CAB_BLOCKMAX (32768)
#define CAB_INPUTMAX (CAB_BLOCKMAX+6144)
struct cab_file {
struct cab_file *next; /* next file in sequence */
struct cab_folder *folder; /* folder that contains this file */
LPCSTR filename; /* output name of file */
HANDLE fh; /* open file handle or NULL */
cab_ULONG length; /* uncompressed length of file */
cab_ULONG offset; /* uncompressed offset in folder */
cab_UWORD index; /* magic index number of folder */
cab_UWORD time, date, attribs; /* MS-DOS time/date/attributes */
};
struct cab_folder {
struct cab_folder *next;
struct cabinet *cab[CAB_SPLITMAX]; /* cabinet(s) this folder spans */
cab_off_t offset[CAB_SPLITMAX]; /* offset to data blocks */
cab_UWORD comp_type; /* compression format/window size */
cab_ULONG comp_size; /* compressed size of folder */
cab_UBYTE num_splits; /* number of split blocks + 1 */
cab_UWORD num_blocks; /* total number of blocks */
struct cab_file *contfile; /* the first split file */
};
struct cabinet {
struct cabinet *next; /* for making a list of cabinets */
LPCSTR filename; /* input name of cabinet */
HANDLE *fh; /* open file handle or NULL */
cab_off_t filelen; /* length of cabinet file */
cab_off_t blocks_off; /* offset to data blocks in file */
struct cabinet *prevcab, *nextcab; /* multipart cabinet chains */
char *prevname, *nextname; /* and their filenames */
char *previnfo, *nextinfo; /* and their visible names */
struct cab_folder *folders; /* first folder in this cabinet */
struct cab_file *files; /* first file in this cabinet */
cab_UBYTE block_resv; /* reserved space in datablocks */
cab_UBYTE flags; /* header flags */
};
typedef struct cds_forward {
struct cab_folder *current; /* current folder we're extracting from */
cab_ULONG offset; /* uncompressed offset within folder */
cab_UBYTE *outpos; /* (high level) start of data to use up */
cab_UWORD outlen; /* (high level) amount of data to use up */
cab_UWORD split; /* at which split in current folder? */
int (*decompress)(int, int, struct cds_forward *); /* chosen compress fn */
cab_UBYTE inbuf[CAB_INPUTMAX+2]; /* +2 for lzx bitbuffer overflows! */
cab_UBYTE outbuf[CAB_BLOCKMAX];
cab_UBYTE q_length_base[27], q_length_extra[27], q_extra_bits[42];
cab_ULONG q_position_base[42];
cab_ULONG lzx_position_base[51];
cab_UBYTE extra_bits[51];
union {
struct ZIPstate zip;
struct QTMstate qtm;
struct LZXstate lzx;
} methods;
} cab_decomp_state;
/*
* the rest of these are somewhat kludgy macros which are shared between fdi.c
* and cabextract.c.
*/
/* Bitstream reading macros (Quantum / normal byte order)
*
* Q_INIT_BITSTREAM should be used first to set up the system
* Q_READ_BITS(var,n) takes N bits from the buffer and puts them in var.
* unlike LZX, this can loop several times to get the
* requisite number of bits.
* Q_FILL_BUFFER adds more data to the bit buffer, if there is room
* for another 16 bits.
* Q_PEEK_BITS(n) extracts (without removing) N bits from the bit
* buffer
* Q_REMOVE_BITS(n) removes N bits from the bit buffer
*
* These bit access routines work by using the area beyond the MSB and the
* LSB as a free source of zeroes. This avoids having to mask any bits.
* So we have to know the bit width of the bitbuffer variable. This is
* defined as ULONG_BITS.
*
* ULONG_BITS should be at least 16 bits. Unlike LZX's Huffman decoding,
* Quantum's arithmetic decoding only needs 1 bit at a time, it doesn't
* need an assured number. Retrieving larger bitstrings can be done with
* multiple reads and fills of the bitbuffer. The code should work fine
* for machines where ULONG >= 32 bits.
*
* Also note that Quantum reads bytes in normal order; LZX is in
* little-endian order.
*/
#define Q_INIT_BITSTREAM do { bitsleft = 0; bitbuf = 0; } while (0)
#define Q_FILL_BUFFER do { \
if (bitsleft <= (CAB_ULONG_BITS - 16)) { \
bitbuf |= ((inpos[0]<<8)|inpos[1]) << (CAB_ULONG_BITS-16 - bitsleft); \
bitsleft += 16; inpos += 2; \
} \
} while (0)
#define Q_PEEK_BITS(n) (bitbuf >> (CAB_ULONG_BITS - (n)))
#define Q_REMOVE_BITS(n) ((bitbuf <<= (n)), (bitsleft -= (n)))
#define Q_READ_BITS(v,n) do { \
(v) = 0; \
for (bitsneed = (n); bitsneed; bitsneed -= bitrun) { \
Q_FILL_BUFFER; \
bitrun = (bitsneed > bitsleft) ? bitsleft : bitsneed; \
(v) = ((v) << bitrun) | Q_PEEK_BITS(bitrun); \
Q_REMOVE_BITS(bitrun); \
} \
} while (0)
#define Q_MENTRIES(model) (QTM(model).entries)
#define Q_MSYM(model,symidx) (QTM(model).syms[(symidx)].sym)
#define Q_MSYMFREQ(model,symidx) (QTM(model).syms[(symidx)].cumfreq)
/* GET_SYMBOL(model, var) fetches the next symbol from the stated model
* and puts it in var. it may need to read the bitstream to do this.
*/
#define GET_SYMBOL(m, var) do { \
range = ((H - L) & 0xFFFF) + 1; \
symf = ((((C - L + 1) * Q_MSYMFREQ(m,0)) - 1) / range) & 0xFFFF; \
\
for (i=1; i < Q_MENTRIES(m); i++) { \
if (Q_MSYMFREQ(m,i) <= symf) break; \
} \
(var) = Q_MSYM(m,i-1); \
\
range = (H - L) + 1; \
H = L + ((Q_MSYMFREQ(m,i-1) * range) / Q_MSYMFREQ(m,0)) - 1; \
L = L + ((Q_MSYMFREQ(m,i) * range) / Q_MSYMFREQ(m,0)); \
while (1) { \
if ((L & 0x8000) != (H & 0x8000)) { \
if ((L & 0x4000) && !(H & 0x4000)) { \
/* underflow case */ \
C ^= 0x4000; L &= 0x3FFF; H |= 0x4000; \
} \
else break; \
} \
L <<= 1; H = (H << 1) | 1; \
Q_FILL_BUFFER; \
C = (C << 1) | Q_PEEK_BITS(1); \
Q_REMOVE_BITS(1); \
} \
\
QTMupdatemodel(&(QTM(m)), i); \
} while (0)
/* Bitstream reading macros (LZX / intel little-endian byte order)
*
* INIT_BITSTREAM should be used first to set up the system
* READ_BITS(var,n) takes N bits from the buffer and puts them in var
*
* ENSURE_BITS(n) ensures there are at least N bits in the bit buffer.
* it can guarantee up to 17 bits (i.e. it can read in
* 16 new bits when there is down to 1 bit in the buffer,
* and it can read 32 bits when there are 0 bits in the
* buffer).
* PEEK_BITS(n) extracts (without removing) N bits from the bit buffer
* REMOVE_BITS(n) removes N bits from the bit buffer
*
* These bit access routines work by using the area beyond the MSB and the
* LSB as a free source of zeroes. This avoids having to mask any bits.
* So we have to know the bit width of the bitbuffer variable.
*/
#define INIT_BITSTREAM do { bitsleft = 0; bitbuf = 0; } while (0)
/* Quantum reads bytes in normal order; LZX is little-endian order */
#define ENSURE_BITS(n) \
while (bitsleft < (n)) { \
bitbuf |= ((inpos[1]<<8)|inpos[0]) << (CAB_ULONG_BITS-16 - bitsleft); \
bitsleft += 16; inpos+=2; \
}
#define PEEK_BITS(n) (bitbuf >> (CAB_ULONG_BITS - (n)))
#define REMOVE_BITS(n) ((bitbuf <<= (n)), (bitsleft -= (n)))
#define READ_BITS(v,n) do { \
if (n) { \
ENSURE_BITS(n); \
(v) = PEEK_BITS(n); \
REMOVE_BITS(n); \
} \
else { \
(v) = 0; \
} \
} while (0)
/* Huffman macros */
#define TABLEBITS(tbl) (LZX_##tbl##_TABLEBITS)
#define MAXSYMBOLS(tbl) (LZX_##tbl##_MAXSYMBOLS)
#define SYMTABLE(tbl) (LZX(tbl##_table))
#define LENTABLE(tbl) (LZX(tbl##_len))
/* BUILD_TABLE(tablename) builds a huffman lookup table from code lengths.
* In reality, it just calls make_decode_table() with the appropriate
* values - they're all fixed by some #defines anyway, so there's no point
* writing each call out in full by hand.
*/
#define BUILD_TABLE(tbl) \
if (make_decode_table( \
MAXSYMBOLS(tbl), TABLEBITS(tbl), LENTABLE(tbl), SYMTABLE(tbl) \
)) { return DECR_ILLEGALDATA; }
/* READ_HUFFSYM(tablename, var) decodes one huffman symbol from the
* bitstream using the stated table and puts it in var.
*/
#define READ_HUFFSYM(tbl,var) do { \
ENSURE_BITS(16); \
hufftbl = SYMTABLE(tbl); \
if ((i = hufftbl[PEEK_BITS(TABLEBITS(tbl))]) >= MAXSYMBOLS(tbl)) { \
j = 1 << (CAB_ULONG_BITS - TABLEBITS(tbl)); \
do { \
j >>= 1; i <<= 1; i |= (bitbuf & j) ? 1 : 0; \
if (!j) { return DECR_ILLEGALDATA; } \
} while ((i = hufftbl[i]) >= MAXSYMBOLS(tbl)); \
} \
j = LENTABLE(tbl)[(var) = i]; \
REMOVE_BITS(j); \
} while (0)
/* READ_LENGTHS(tablename, first, last) reads in code lengths for symbols
* first to last in the given table. The code lengths are stored in their
* own special LZX way.
*/
#define READ_LENGTHS(tbl,first,last,fn) do { \
lb.bb = bitbuf; lb.bl = bitsleft; lb.ip = inpos; \
if (fn(LENTABLE(tbl),(first),(last),&lb,decomp_state)) { \
return DECR_ILLEGALDATA; \
} \
bitbuf = lb.bb; bitsleft = lb.bl; inpos = lb.ip; \
} while (0)
/* Tables for deflate from PKZIP's appnote.txt. */
#define THOSE_ZIP_CONSTS \
static const cab_UBYTE Zipborder[] = /* Order of the bit length code lengths */ \
{ 16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15}; \
static const cab_UWORD Zipcplens[] = /* Copy lengths for literal codes 257..285 */ \
{ 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 23, 27, 31, 35, 43, 51, \
59, 67, 83, 99, 115, 131, 163, 195, 227, 258, 0, 0}; \
static const cab_UWORD Zipcplext[] = /* Extra bits for literal codes 257..285 */ \
{ 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, \
4, 5, 5, 5, 5, 0, 99, 99}; /* 99==invalid */ \
static const cab_UWORD Zipcpdist[] = /* Copy offsets for distance codes 0..29 */ \
{ 1, 2, 3, 4, 5, 7, 9, 13, 17, 25, 33, 49, 65, 97, 129, 193, 257, 385, \
513, 769, 1025, 1537, 2049, 3073, 4097, 6145, 8193, 12289, 16385, 24577}; \
static const cab_UWORD Zipcpdext[] = /* Extra bits for distance codes */ \
{ 0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10, \
10, 11, 11, 12, 12, 13, 13}; \
/* And'ing with Zipmask[n] masks the lower n bits */ \
static const cab_UWORD Zipmask[17] = { \
0x0000, 0x0001, 0x0003, 0x0007, 0x000f, 0x001f, 0x003f, 0x007f, 0x00ff, \
0x01ff, 0x03ff, 0x07ff, 0x0fff, 0x1fff, 0x3fff, 0x7fff, 0xffff \
}
/* SESSION Operation */
#define EXTRACT_FILLFILELIST 0x00000001
#define EXTRACT_EXTRACTFILES 0x00000002
struct FILELIST{
LPSTR FileName;
struct FILELIST *next;
BOOL DoExtract;
};
typedef struct {
INT FileSize;
ERF Error;
struct FILELIST *FileList;
INT FileCount;
INT Operation;
CHAR Destination[MAX_PATH];
CHAR CurrentFile[MAX_PATH];
CHAR Reserved[MAX_PATH];
struct FILELIST *FilterList;
} SESSION;
#endif /* __WINE_CABINET_H */