cabinet.h 23.2 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531
/*
 * cabinet.h
 *
 * Copyright 2002 Greg Turner
 * Copyright 2005 Gerold Jens Wucherpfennig
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with this library; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA
 */
#ifndef __WINE_CABINET_H
#define __WINE_CABINET_H

#include <stdarg.h>

#include "windef.h"
#include "winbase.h"
#include "winnt.h"
#include "fdi.h"
#include "fci.h"

/* from msvcrt/sys/stat.h */
#define _S_IWRITE 0x0080
#define _S_IREAD  0x0100

/* from msvcrt/fcntl.h */
#define _O_RDONLY      0
#define _O_WRONLY      1
#define _O_RDWR        2
#define _O_ACCMODE     (_O_RDONLY|_O_WRONLY|_O_RDWR)
#define _O_APPEND      0x0008
#define _O_RANDOM      0x0010
#define _O_SEQUENTIAL  0x0020
#define _O_TEMPORARY   0x0040
#define _O_NOINHERIT   0x0080
#define _O_CREAT       0x0100
#define _O_TRUNC       0x0200
#define _O_EXCL        0x0400
#define _O_SHORT_LIVED 0x1000
#define _O_TEXT        0x4000
#define _O_BINARY      0x8000

#define CAB_SPLITMAX (10)

#define CAB_SEARCH_SIZE (32*1024)

typedef unsigned char cab_UBYTE; /* 8 bits  */
typedef UINT16        cab_UWORD; /* 16 bits */
typedef UINT32        cab_ULONG; /* 32 bits */
typedef INT32         cab_LONG;  /* 32 bits */

typedef UINT32        cab_off_t;

/* number of bits in a ULONG */
#ifndef CHAR_BIT
# define CHAR_BIT (8)
#endif
#define CAB_ULONG_BITS (sizeof(cab_ULONG) * CHAR_BIT)

/* structure offsets */
#define cfhead_Signature         (0x00)
#define cfhead_CabinetSize       (0x08)
#define cfhead_FileOffset        (0x10)
#define cfhead_MinorVersion      (0x18)
#define cfhead_MajorVersion      (0x19)
#define cfhead_NumFolders        (0x1A)
#define cfhead_NumFiles          (0x1C)
#define cfhead_Flags             (0x1E)
#define cfhead_SetID             (0x20)
#define cfhead_CabinetIndex      (0x22)
#define cfhead_SIZEOF            (0x24)
#define cfheadext_HeaderReserved (0x00)
#define cfheadext_FolderReserved (0x02)
#define cfheadext_DataReserved   (0x03)
#define cfheadext_SIZEOF         (0x04)
#define cffold_DataOffset        (0x00)
#define cffold_NumBlocks         (0x04)
#define cffold_CompType          (0x06)
#define cffold_SIZEOF            (0x08)
#define cffile_UncompressedSize  (0x00)
#define cffile_FolderOffset      (0x04)
#define cffile_FolderIndex       (0x08)
#define cffile_Date              (0x0A)
#define cffile_Time              (0x0C)
#define cffile_Attribs           (0x0E)
#define cffile_SIZEOF            (0x10)
#define cfdata_CheckSum          (0x00)
#define cfdata_CompressedSize    (0x04)
#define cfdata_UncompressedSize  (0x06)
#define cfdata_SIZEOF            (0x08)

/* flags */
#define cffoldCOMPTYPE_MASK            (0x000f)
#define cffoldCOMPTYPE_NONE            (0x0000)
#define cffoldCOMPTYPE_MSZIP           (0x0001)
#define cffoldCOMPTYPE_QUANTUM         (0x0002)
#define cffoldCOMPTYPE_LZX             (0x0003)
#define cfheadPREV_CABINET             (0x0001)
#define cfheadNEXT_CABINET             (0x0002)
#define cfheadRESERVE_PRESENT          (0x0004)
#define cffileCONTINUED_FROM_PREV      (0xFFFD)
#define cffileCONTINUED_TO_NEXT        (0xFFFE)
#define cffileCONTINUED_PREV_AND_NEXT  (0xFFFF)
#define cffile_A_RDONLY                (0x01)
#define cffile_A_HIDDEN                (0x02)
#define cffile_A_SYSTEM                (0x04)
#define cffile_A_ARCH                  (0x20)
#define cffile_A_EXEC                  (0x40)
#define cffile_A_NAME_IS_UTF           (0x80)

/****************************************************************************/
/* our archiver information / state */

/* MSZIP stuff */
#define ZIPWSIZE 	0x8000  /* window size */
#define ZIPLBITS	9	/* bits in base literal/length lookup table */
#define ZIPDBITS	6	/* bits in base distance lookup table */
#define ZIPBMAX		16      /* maximum bit length of any code */
#define ZIPN_MAX	288     /* maximum number of codes in any set */

struct Ziphuft {
  cab_UBYTE e;                /* number of extra bits or operation */
  cab_UBYTE b;                /* number of bits in this code or subcode */
  union {
    cab_UWORD n;              /* literal, length base, or distance base */
    struct Ziphuft *t;        /* pointer to next level of table */
  } v;
};

struct ZIPstate {
    cab_ULONG window_posn;      /* current offset within the window        */
    cab_ULONG bb;               /* bit buffer */
    cab_ULONG bk;               /* bits in bit buffer */
    cab_ULONG ll[288+32];       /* literal/length and distance code lengths */
    cab_ULONG c[ZIPBMAX+1];     /* bit length count table */
    cab_LONG  lx[ZIPBMAX+1];    /* memory for l[-1..ZIPBMAX-1] */
    struct Ziphuft *u[ZIPBMAX];	/* table stack */
    cab_ULONG v[ZIPN_MAX];      /* values in order of bit length */
    cab_ULONG x[ZIPBMAX+1];     /* bit offsets, then code stack */
    cab_UBYTE *inpos;
};
  
/* Quantum stuff */

struct QTMmodelsym {
  cab_UWORD sym, cumfreq;
};

struct QTMmodel {
  int shiftsleft, entries; 
  struct QTMmodelsym *syms;
  cab_UWORD tabloc[256];
};

struct QTMstate {
    cab_UBYTE *window;         /* the actual decoding window              */
    cab_ULONG window_size;     /* window size (1Kb through 2Mb)           */
    cab_ULONG actual_size;     /* window size when it was first allocated */
    cab_ULONG window_posn;     /* current offset within the window        */

    struct QTMmodel model7;
    struct QTMmodelsym m7sym[7+1];

    struct QTMmodel model4, model5, model6pos, model6len;
    struct QTMmodelsym m4sym[0x18 + 1];
    struct QTMmodelsym m5sym[0x24 + 1];
    struct QTMmodelsym m6psym[0x2a + 1], m6lsym[0x1b + 1];

    struct QTMmodel model00, model40, model80, modelC0;
    struct QTMmodelsym m00sym[0x40 + 1], m40sym[0x40 + 1];
    struct QTMmodelsym m80sym[0x40 + 1], mC0sym[0x40 + 1];
};

/* LZX stuff */

/* some constants defined by the LZX specification */
#define LZX_MIN_MATCH                (2)
#define LZX_MAX_MATCH                (257)
#define LZX_NUM_CHARS                (256)
#define LZX_BLOCKTYPE_INVALID        (0)   /* also blocktypes 4-7 invalid */
#define LZX_BLOCKTYPE_VERBATIM       (1)
#define LZX_BLOCKTYPE_ALIGNED        (2)
#define LZX_BLOCKTYPE_UNCOMPRESSED   (3)
#define LZX_PRETREE_NUM_ELEMENTS     (20)
#define LZX_ALIGNED_NUM_ELEMENTS     (8)   /* aligned offset tree #elements */
#define LZX_NUM_PRIMARY_LENGTHS      (7)   /* this one missing from spec! */
#define LZX_NUM_SECONDARY_LENGTHS    (249) /* length tree #elements */

/* LZX huffman defines: tweak tablebits as desired */
#define LZX_PRETREE_MAXSYMBOLS  (LZX_PRETREE_NUM_ELEMENTS)
#define LZX_PRETREE_TABLEBITS   (6)
#define LZX_MAINTREE_MAXSYMBOLS (LZX_NUM_CHARS + 50*8)
#define LZX_MAINTREE_TABLEBITS  (12)
#define LZX_LENGTH_MAXSYMBOLS   (LZX_NUM_SECONDARY_LENGTHS+1)
#define LZX_LENGTH_TABLEBITS    (12)
#define LZX_ALIGNED_MAXSYMBOLS  (LZX_ALIGNED_NUM_ELEMENTS)
#define LZX_ALIGNED_TABLEBITS   (7)

#define LZX_LENTABLE_SAFETY (64) /* we allow length table decoding overruns */

#define LZX_DECLARE_TABLE(tbl) \
  cab_UWORD tbl##_table[(1<<LZX_##tbl##_TABLEBITS) + (LZX_##tbl##_MAXSYMBOLS<<1)];\
  cab_UBYTE tbl##_len  [LZX_##tbl##_MAXSYMBOLS + LZX_LENTABLE_SAFETY]

struct LZXstate {
    cab_UBYTE *window;         /* the actual decoding window              */
    cab_ULONG window_size;     /* window size (32Kb through 2Mb)          */
    cab_ULONG actual_size;     /* window size when it was first allocated */
    cab_ULONG window_posn;     /* current offset within the window        */
    cab_ULONG R0, R1, R2;      /* for the LRU offset system               */
    cab_UWORD main_elements;   /* number of main tree elements            */
    int   header_read;         /* have we started decoding at all yet?    */
    cab_UWORD block_type;      /* type of this block                      */
    cab_ULONG block_length;    /* uncompressed length of this block       */
    cab_ULONG block_remaining; /* uncompressed bytes still left to decode */
    cab_ULONG frames_read;     /* the number of CFDATA blocks processed   */
    cab_LONG  intel_filesize;  /* magic header value used for transform   */
    cab_LONG  intel_curpos;    /* current offset in transform space       */
    int   intel_started;       /* have we seen any translatable data yet? */

    LZX_DECLARE_TABLE(PRETREE);
    LZX_DECLARE_TABLE(MAINTREE);
    LZX_DECLARE_TABLE(LENGTH);
    LZX_DECLARE_TABLE(ALIGNED);
};

struct lzx_bits {
  cab_ULONG bb;
  int bl;
  cab_UBYTE *ip;
};

/* CAB data blocks are <= 32768 bytes in uncompressed form. Uncompressed
 * blocks have zero growth. MSZIP guarantees that it won't grow above
 * uncompressed size by more than 12 bytes. LZX guarantees it won't grow
 * more than 6144 bytes.
 */
#define CAB_BLOCKMAX (32768)
#define CAB_INPUTMAX (CAB_BLOCKMAX+6144)

struct cab_file {
  struct cab_file *next;               /* next file in sequence          */
  struct cab_folder *folder;           /* folder that contains this file */
  LPCSTR filename;                     /* output name of file            */
  HANDLE fh;                           /* open file handle or NULL       */
  cab_ULONG length;                    /* uncompressed length of file    */
  cab_ULONG offset;                    /* uncompressed offset in folder  */
  cab_UWORD index;                     /* magic index number of folder   */
  cab_UWORD time, date, attribs;       /* MS-DOS time/date/attributes    */
};


struct cab_folder {
  struct cab_folder *next;
  struct cabinet *cab[CAB_SPLITMAX];   /* cabinet(s) this folder spans   */
  cab_off_t offset[CAB_SPLITMAX];      /* offset to data blocks          */
  cab_UWORD comp_type;                 /* compression format/window size */
  cab_ULONG comp_size;                 /* compressed size of folder      */
  cab_UBYTE num_splits;                /* number of split blocks + 1     */
  cab_UWORD num_blocks;                /* total number of blocks         */
  struct cab_file *contfile;           /* the first split file           */
};

struct cabinet {
  struct cabinet *next;                /* for making a list of cabinets  */
  LPCSTR filename;                     /* input name of cabinet          */
  HANDLE *fh;                          /* open file handle or NULL       */
  cab_off_t filelen;                   /* length of cabinet file         */
  cab_off_t blocks_off;                /* offset to data blocks in file  */
  struct cabinet *prevcab, *nextcab;   /* multipart cabinet chains       */
  char *prevname, *nextname;           /* and their filenames            */
  char *previnfo, *nextinfo;           /* and their visible names        */
  struct cab_folder *folders;          /* first folder in this cabinet   */
  struct cab_file *files;              /* first file in this cabinet     */
  cab_UBYTE block_resv;                /* reserved space in datablocks   */
  cab_UBYTE flags;                     /* header flags                   */
};

typedef struct cds_forward {
  struct cab_folder *current;      /* current folder we're extracting from  */
  cab_ULONG offset;                /* uncompressed offset within folder     */
  cab_UBYTE *outpos;               /* (high level) start of data to use up  */
  cab_UWORD outlen;                /* (high level) amount of data to use up */
  cab_UWORD split;                 /* at which split in current folder?     */
  int (*decompress)(int, int, struct cds_forward *); /* chosen compress fn  */
  cab_UBYTE inbuf[CAB_INPUTMAX+2]; /* +2 for lzx bitbuffer overflows!       */
  cab_UBYTE outbuf[CAB_BLOCKMAX];
  cab_UBYTE q_length_base[27], q_length_extra[27], q_extra_bits[42];
  cab_ULONG q_position_base[42];
  cab_ULONG lzx_position_base[51];
  cab_UBYTE extra_bits[51];
  union {
    struct ZIPstate zip;
    struct QTMstate qtm;
    struct LZXstate lzx;
  } methods;
} cab_decomp_state;

/*
 * the rest of these are somewhat kludgy macros which are shared between fdi.c
 * and cabextract.c.
 */

/* Bitstream reading macros (Quantum / normal byte order)
 *
 * Q_INIT_BITSTREAM    should be used first to set up the system
 * Q_READ_BITS(var,n)  takes N bits from the buffer and puts them in var.
 *                     unlike LZX, this can loop several times to get the
 *                     requisite number of bits.
 * Q_FILL_BUFFER       adds more data to the bit buffer, if there is room
 *                     for another 16 bits.
 * Q_PEEK_BITS(n)      extracts (without removing) N bits from the bit
 *                     buffer
 * Q_REMOVE_BITS(n)    removes N bits from the bit buffer
 *
 * These bit access routines work by using the area beyond the MSB and the
 * LSB as a free source of zeroes. This avoids having to mask any bits.
 * So we have to know the bit width of the bitbuffer variable. This is
 * defined as ULONG_BITS.
 *
 * ULONG_BITS should be at least 16 bits. Unlike LZX's Huffman decoding,
 * Quantum's arithmetic decoding only needs 1 bit at a time, it doesn't
 * need an assured number. Retrieving larger bitstrings can be done with
 * multiple reads and fills of the bitbuffer. The code should work fine
 * for machines where ULONG >= 32 bits.
 *
 * Also note that Quantum reads bytes in normal order; LZX is in
 * little-endian order.
 */

#define Q_INIT_BITSTREAM do { bitsleft = 0; bitbuf = 0; } while (0)

#define Q_FILL_BUFFER do {                                                  \
  if (bitsleft <= (CAB_ULONG_BITS - 16)) {                                  \
    bitbuf |= ((inpos[0]<<8)|inpos[1]) << (CAB_ULONG_BITS-16 - bitsleft);   \
    bitsleft += 16; inpos += 2;                                             \
  }                                                                         \
} while (0)

#define Q_PEEK_BITS(n)   (bitbuf >> (CAB_ULONG_BITS - (n)))
#define Q_REMOVE_BITS(n) ((bitbuf <<= (n)), (bitsleft -= (n)))

#define Q_READ_BITS(v,n) do {                                           \
  (v) = 0;                                                              \
  for (bitsneed = (n); bitsneed; bitsneed -= bitrun) {                  \
    Q_FILL_BUFFER;                                                      \
    bitrun = (bitsneed > bitsleft) ? bitsleft : bitsneed;               \
    (v) = ((v) << bitrun) | Q_PEEK_BITS(bitrun);                        \
    Q_REMOVE_BITS(bitrun);                                              \
  }                                                                     \
} while (0)

#define Q_MENTRIES(model) (QTM(model).entries)
#define Q_MSYM(model,symidx) (QTM(model).syms[(symidx)].sym)
#define Q_MSYMFREQ(model,symidx) (QTM(model).syms[(symidx)].cumfreq)

/* GET_SYMBOL(model, var) fetches the next symbol from the stated model
 * and puts it in var. it may need to read the bitstream to do this.
 */
#define GET_SYMBOL(m, var) do {                                         \
  range =  ((H - L) & 0xFFFF) + 1;                                      \
  symf = ((((C - L + 1) * Q_MSYMFREQ(m,0)) - 1) / range) & 0xFFFF;      \
                                                                        \
  for (i=1; i < Q_MENTRIES(m); i++) {                                   \
    if (Q_MSYMFREQ(m,i) <= symf) break;                                 \
  }                                                                     \
  (var) = Q_MSYM(m,i-1);                                                \
                                                                        \
  range = (H - L) + 1;                                                  \
  H = L + ((Q_MSYMFREQ(m,i-1) * range) / Q_MSYMFREQ(m,0)) - 1;          \
  L = L + ((Q_MSYMFREQ(m,i)   * range) / Q_MSYMFREQ(m,0));              \
  while (1) {                                                           \
    if ((L & 0x8000) != (H & 0x8000)) {                                 \
      if ((L & 0x4000) && !(H & 0x4000)) {                              \
        /* underflow case */                                            \
        C ^= 0x4000; L &= 0x3FFF; H |= 0x4000;                          \
      }                                                                 \
      else break;                                                       \
    }                                                                   \
    L <<= 1; H = (H << 1) | 1;                                          \
    Q_FILL_BUFFER;                                                      \
    C  = (C << 1) | Q_PEEK_BITS(1);                                     \
    Q_REMOVE_BITS(1);                                                   \
  }                                                                     \
                                                                        \
  QTMupdatemodel(&(QTM(m)), i);                                         \
} while (0)

/* Bitstream reading macros (LZX / intel little-endian byte order)
 *
 * INIT_BITSTREAM    should be used first to set up the system
 * READ_BITS(var,n)  takes N bits from the buffer and puts them in var
 *
 * ENSURE_BITS(n)    ensures there are at least N bits in the bit buffer.
 *                   it can guarantee up to 17 bits (i.e. it can read in
 *                   16 new bits when there is down to 1 bit in the buffer,
 *                   and it can read 32 bits when there are 0 bits in the
 *                   buffer).
 * PEEK_BITS(n)      extracts (without removing) N bits from the bit buffer
 * REMOVE_BITS(n)    removes N bits from the bit buffer
 *
 * These bit access routines work by using the area beyond the MSB and the
 * LSB as a free source of zeroes. This avoids having to mask any bits.
 * So we have to know the bit width of the bitbuffer variable.
 */

#define INIT_BITSTREAM do { bitsleft = 0; bitbuf = 0; } while (0)

/* Quantum reads bytes in normal order; LZX is little-endian order */
#define ENSURE_BITS(n)                                                    \
  while (bitsleft < (n)) {                                                \
    bitbuf |= ((inpos[1]<<8)|inpos[0]) << (CAB_ULONG_BITS-16 - bitsleft); \
    bitsleft += 16; inpos+=2;                                             \
  }

#define PEEK_BITS(n)   (bitbuf >> (CAB_ULONG_BITS - (n)))
#define REMOVE_BITS(n) ((bitbuf <<= (n)), (bitsleft -= (n)))

#define READ_BITS(v,n) do {                                             \
  if (n) {                                                              \
    ENSURE_BITS(n);                                                     \
    (v) = PEEK_BITS(n);                                                 \
    REMOVE_BITS(n);                                                     \
  }                                                                     \
  else {                                                                \
    (v) = 0;                                                            \
  }                                                                     \
} while (0)

/* Huffman macros */

#define TABLEBITS(tbl)   (LZX_##tbl##_TABLEBITS)
#define MAXSYMBOLS(tbl)  (LZX_##tbl##_MAXSYMBOLS)
#define SYMTABLE(tbl)    (LZX(tbl##_table))
#define LENTABLE(tbl)    (LZX(tbl##_len))

/* BUILD_TABLE(tablename) builds a huffman lookup table from code lengths.
 * In reality, it just calls make_decode_table() with the appropriate
 * values - they're all fixed by some #defines anyway, so there's no point
 * writing each call out in full by hand.
 */
#define BUILD_TABLE(tbl)                                                \
  if (make_decode_table(                                                \
    MAXSYMBOLS(tbl), TABLEBITS(tbl), LENTABLE(tbl), SYMTABLE(tbl)       \
  )) { return DECR_ILLEGALDATA; }

/* READ_HUFFSYM(tablename, var) decodes one huffman symbol from the
 * bitstream using the stated table and puts it in var.
 */
#define READ_HUFFSYM(tbl,var) do {                                      \
  ENSURE_BITS(16);                                                      \
  hufftbl = SYMTABLE(tbl);                                              \
  if ((i = hufftbl[PEEK_BITS(TABLEBITS(tbl))]) >= MAXSYMBOLS(tbl)) {    \
    j = 1 << (CAB_ULONG_BITS - TABLEBITS(tbl));                         \
    do {                                                                \
      j >>= 1; i <<= 1; i |= (bitbuf & j) ? 1 : 0;                      \
      if (!j) { return DECR_ILLEGALDATA; }                              \
    } while ((i = hufftbl[i]) >= MAXSYMBOLS(tbl));                      \
  }                                                                     \
  j = LENTABLE(tbl)[(var) = i];                                         \
  REMOVE_BITS(j);                                                       \
} while (0)

/* READ_LENGTHS(tablename, first, last) reads in code lengths for symbols
 * first to last in the given table. The code lengths are stored in their
 * own special LZX way.
 */
#define READ_LENGTHS(tbl,first,last,fn) do { \
  lb.bb = bitbuf; lb.bl = bitsleft; lb.ip = inpos; \
  if (fn(LENTABLE(tbl),(first),(last),&lb,decomp_state)) { \
    return DECR_ILLEGALDATA; \
  } \
  bitbuf = lb.bb; bitsleft = lb.bl; inpos = lb.ip; \
} while (0)

/* Tables for deflate from PKZIP's appnote.txt. */

#define THOSE_ZIP_CONSTS                                                           \
static const cab_UBYTE Zipborder[] = /* Order of the bit length code lengths */    \
{ 16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15};               \
static const cab_UWORD Zipcplens[] = /* Copy lengths for literal codes 257..285 */ \
{ 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 23, 27, 31, 35, 43, 51,             \
 59, 67, 83, 99, 115, 131, 163, 195, 227, 258, 0, 0};                              \
static const cab_UWORD Zipcplext[] = /* Extra bits for literal codes 257..285 */   \
{ 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4,             \
  4, 5, 5, 5, 5, 0, 99, 99}; /* 99==invalid */                                     \
static const cab_UWORD Zipcpdist[] = /* Copy offsets for distance codes 0..29 */   \
{ 1, 2, 3, 4, 5, 7, 9, 13, 17, 25, 33, 49, 65, 97, 129, 193, 257, 385,             \
513, 769, 1025, 1537, 2049, 3073, 4097, 6145, 8193, 12289, 16385, 24577};          \
static const cab_UWORD Zipcpdext[] = /* Extra bits for distance codes */           \
{ 0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10,            \
10, 11, 11, 12, 12, 13, 13};                                                       \
/* And'ing with Zipmask[n] masks the lower n bits */                               \
static const cab_UWORD Zipmask[17] = {                                             \
 0x0000, 0x0001, 0x0003, 0x0007, 0x000f, 0x001f, 0x003f, 0x007f, 0x00ff,           \
 0x01ff, 0x03ff, 0x07ff, 0x0fff, 0x1fff, 0x3fff, 0x7fff, 0xffff                    \
}

/* SESSION Operation */
#define EXTRACT_FILLFILELIST  0x00000001
#define EXTRACT_EXTRACTFILES  0x00000002

struct FILELIST{
    LPSTR FileName;
    struct FILELIST *next;
    BOOL DoExtract;
};

typedef struct {
    INT FileSize;
    ERF Error;
    struct FILELIST *FileList;
    INT FileCount;
    INT Operation;
    CHAR Destination[MAX_PATH];
    CHAR CurrentFile[MAX_PATH];
    CHAR Reserved[MAX_PATH];
    struct FILELIST *FilterList;
} SESSION;

#endif /* __WINE_CABINET_H */