pulse.c 77.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
/*
 * Copyright 2011-2012 Maarten Lankhorst
 * Copyright 2010-2011 Maarten Lankhorst for CodeWeavers
 * Copyright 2011 Andrew Eikum for CodeWeavers
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with this library; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA
 */

#if 0
#pragma makedep unix
#endif

#include <stdarg.h>
#include <pthread.h>
27
#include <math.h>
28 29 30
#include <poll.h>

#include <pulse/pulseaudio.h>
31 32 33 34 35

#include "ntstatus.h"
#define WIN32_NO_STATUS
#include "winternl.h"

36
#include "mmdeviceapi.h"
37 38 39
#include "initguid.h"
#include "audioclient.h"

40 41
#include "unixlib.h"

42 43 44 45
#include "wine/debug.h"

WINE_DEFAULT_DEBUG_CHANNEL(pulse);

46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
struct pulse_stream
{
    EDataFlow dataflow;

    pa_stream *stream;
    pa_sample_spec ss;
    pa_channel_map map;
    pa_buffer_attr attr;

    DWORD flags;
    AUDCLNT_SHAREMODE share;
    HANDLE event;
    float vol[PA_CHANNELS_MAX];

    INT32 locked;
61
    BOOL started;
62
    SIZE_T bufsize_frames, real_bufsize_bytes, period_bytes;
63
    SIZE_T peek_ofs, read_offs_bytes, lcl_offs_bytes, pa_offs_bytes;
64
    SIZE_T tmp_buffer_bytes, held_bytes, peek_len, peek_buffer_len, pa_held_bytes;
65 66 67
    BYTE *local_buffer, *tmp_buffer, *peek_buffer;
    void *locked_ptr;
    BOOL please_quit, just_started, just_underran;
68
    pa_usec_t mmdev_period_usec;
69 70 71 72 73 74 75

    INT64 clock_lastpos, clock_written;

    struct list packet_free_head;
    struct list packet_filled_head;
};

76 77 78 79 80 81 82 83
typedef struct _ACPacket
{
    struct list entry;
    UINT64 qpcpos;
    BYTE *data;
    UINT32 discont;
} ACPacket;

84 85 86
typedef struct _PhysDevice {
    struct list entry;
    WCHAR *name;
87 88 89
    enum phys_device_bus_type bus_type;
    USHORT vendor_id, product_id;
    EndpointFormFactor form;
90
    UINT channel_mask;
91
    UINT index;
92 93 94
    char pulse_name[0];
} PhysDevice;

95 96 97 98 99 100 101
static pa_context *pulse_ctx;
static pa_mainloop *pulse_ml;

/* Mixer format + period times */
static WAVEFORMATEXTENSIBLE pulse_fmt[2];
static REFERENCE_TIME pulse_min_period[2], pulse_def_period[2];

102 103
static struct list g_phys_speakers = LIST_INIT(g_phys_speakers);
static struct list g_phys_sources = LIST_INIT(g_phys_sources);
104 105 106 107

static const REFERENCE_TIME MinimumPeriod = 30000;
static const REFERENCE_TIME DefaultPeriod = 100000;

108 109 110
static pthread_mutex_t pulse_mutex;
static pthread_cond_t pulse_cond = PTHREAD_COND_INITIALIZER;

111 112 113
UINT8 mult_alaw_sample(UINT8, float);
UINT8 mult_ulaw_sample(UINT8, float);

114
static void pulse_lock(void)
115 116 117 118
{
    pthread_mutex_lock(&pulse_mutex);
}

119
static void pulse_unlock(void)
120 121 122 123
{
    pthread_mutex_unlock(&pulse_mutex);
}

124
static int pulse_cond_wait(void)
125 126 127 128
{
    return pthread_cond_wait(&pulse_cond, &pulse_mutex);
}

129
static void pulse_broadcast(void)
130 131 132 133
{
    pthread_cond_broadcast(&pulse_cond);
}

134 135 136 137 138
static struct pulse_stream *handle_get_stream(stream_handle h)
{
    return (struct pulse_stream *)(UINT_PTR)h;
}

139 140 141 142 143 144 145 146 147
static void dump_attr(const pa_buffer_attr *attr)
{
    TRACE("maxlength: %u\n", attr->maxlength);
    TRACE("minreq: %u\n", attr->minreq);
    TRACE("fragsize: %u\n", attr->fragsize);
    TRACE("tlength: %u\n", attr->tlength);
    TRACE("prebuf: %u\n", attr->prebuf);
}

148 149 150 151 152 153 154 155 156 157 158 159 160 161
static void free_phys_device_lists(void)
{
    static struct list *const lists[] = { &g_phys_speakers, &g_phys_sources, NULL };
    struct list *const *list = lists;
    PhysDevice *dev, *dev_next;

    do {
        LIST_FOR_EACH_ENTRY_SAFE(dev, dev_next, *list, PhysDevice, entry) {
            free(dev->name);
            free(dev);
        }
    } while (*(++list));
}

162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185
/* copied from kernelbase */
static int muldiv(int a, int b, int c)
{
    LONGLONG ret;

    if (!c) return -1;

    /* We want to deal with a positive divisor to simplify the logic. */
    if (c < 0)
    {
        a = -a;
        c = -c;
    }

    /* If the result is positive, we "add" to round. else, we subtract to round. */
    if ((a < 0 && b < 0) || (a >= 0 && b >= 0))
        ret = (((LONGLONG)a * b) + (c / 2)) / c;
    else
        ret = (((LONGLONG)a * b) - (c / 2)) / c;

    if (ret > 2147483647 || ret < -2147483647) return -1;
    return ret;
}

186 187 188 189 190 191 192 193 194 195 196 197 198 199
/* Following pulseaudio design here, mainloop has the lock taken whenever
 * it is handling something for pulse, and the lock is required whenever
 * doing any pa_* call that can affect the state in any way
 *
 * pa_cond_wait is used when waiting on results, because the mainloop needs
 * the same lock taken to affect the state
 *
 * This is basically the same as the pa_threaded_mainloop implementation,
 * but that cannot be used because it uses pthread_create directly
 *
 * pa_threaded_mainloop_(un)lock -> pthread_mutex_(un)lock
 * pa_threaded_mainloop_signal -> pthread_cond_broadcast
 * pa_threaded_mainloop_wait -> pthread_cond_wait
 */
200 201 202 203 204 205 206 207 208
static int pulse_poll_func(struct pollfd *ufds, unsigned long nfds, int timeout, void *userdata)
{
    int r;
    pulse_unlock();
    r = poll(ufds, nfds, timeout);
    pulse_lock();
    return r;
}

209 210 211 212 213 214 215 216 217 218 219 220 221 222 223
static NTSTATUS pulse_process_attach(void *args)
{
    pthread_mutexattr_t attr;

    pthread_mutexattr_init(&attr);
    pthread_mutexattr_setprotocol(&attr, PTHREAD_PRIO_INHERIT);

    if (pthread_mutex_init(&pulse_mutex, &attr) != 0)
        pthread_mutex_init(&pulse_mutex, NULL);

    return STATUS_SUCCESS;
}

static NTSTATUS pulse_process_detach(void *args)
{
224
    free_phys_device_lists();
225 226 227 228 229 230 231 232 233 234 235
    if (pulse_ctx)
    {
        pa_context_disconnect(pulse_ctx);
        pa_context_unref(pulse_ctx);
    }
    if (pulse_ml)
        pa_mainloop_quit(pulse_ml, 0);

    return STATUS_SUCCESS;
}

236
static NTSTATUS pulse_main_loop(void *args)
237
{
238
    struct main_loop_params *params = args;
239
    int ret;
240
    pulse_lock();
241 242
    pulse_ml = pa_mainloop_new();
    pa_mainloop_set_poll_func(pulse_ml, pulse_poll_func, NULL);
243
    NtSetEvent(params->event, NULL);
244 245
    pa_mainloop_run(pulse_ml, &ret);
    pa_mainloop_free(pulse_ml);
246
    pulse_unlock();
247
    return STATUS_SUCCESS;
248 249
}

250 251 252 253 254
static NTSTATUS pulse_get_endpoint_ids(void *args)
{
    struct get_endpoint_ids_params *params = args;
    struct list *list = (params->flow == eRender) ? &g_phys_speakers : &g_phys_sources;
    struct endpoint *endpoint = params->endpoints;
255
    size_t len, name_len, needed;
256
    unsigned int offset;
257 258 259
    PhysDevice *dev;

    params->num = list_count(list);
260
    offset = needed = params->num * sizeof(*params->endpoints);
261 262 263 264 265 266 267

    LIST_FOR_EACH_ENTRY(dev, list, PhysDevice, entry) {
        name_len = lstrlenW(dev->name) + 1;
        len = strlen(dev->pulse_name) + 1;
        needed += name_len * sizeof(WCHAR) + ((len + 1) & ~1);

        if (needed <= params->size) {
268 269 270 271 272 273
            endpoint->name = offset;
            memcpy((char *)params->endpoints + offset, dev->name, name_len * sizeof(WCHAR));
            offset += name_len * sizeof(WCHAR);
            endpoint->pulse_name = offset;
            memcpy((char *)params->endpoints + offset, dev->pulse_name, len);
            offset += (len + 1) & ~1;
274 275 276 277 278 279 280 281 282 283 284 285 286
            endpoint++;
        }
    }
    params->default_idx = 0;

    if (needed > params->size) {
        params->size = needed;
        params->result = HRESULT_FROM_WIN32(ERROR_INSUFFICIENT_BUFFER);
    } else
        params->result = S_OK;
    return STATUS_SUCCESS;
}

287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319
static void pulse_contextcallback(pa_context *c, void *userdata)
{
    switch (pa_context_get_state(c)) {
        default:
            FIXME("Unhandled state: %i\n", pa_context_get_state(c));
            return;

        case PA_CONTEXT_CONNECTING:
        case PA_CONTEXT_UNCONNECTED:
        case PA_CONTEXT_AUTHORIZING:
        case PA_CONTEXT_SETTING_NAME:
        case PA_CONTEXT_TERMINATED:
            TRACE("State change to %i\n", pa_context_get_state(c));
            return;

        case PA_CONTEXT_READY:
            TRACE("Ready\n");
            break;

        case PA_CONTEXT_FAILED:
            WARN("Context failed: %s\n", pa_strerror(pa_context_errno(c)));
            break;
    }
    pulse_broadcast();
}

static void pulse_stream_state(pa_stream *s, void *user)
{
    pa_stream_state_t state = pa_stream_get_state(s);
    TRACE("Stream state changed to %i\n", state);
    pulse_broadcast();
}

320 321 322 323 324 325 326
static void pulse_attr_update(pa_stream *s, void *user) {
    const pa_buffer_attr *attr = pa_stream_get_buffer_attr(s);
    TRACE("New attributes or device moved:\n");
    dump_attr(attr);
}

static void pulse_underflow_callback(pa_stream *s, void *userdata)
327
{
328 329 330 331 332 333 334 335 336 337
    struct pulse_stream *stream = userdata;
    WARN("%p: Underflow\n", userdata);
    stream->just_underran = TRUE;
}

static void pulse_started_callback(pa_stream *s, void *userdata)
{
    TRACE("%p: (Re)started playing\n", userdata);
}

338 339 340 341 342 343 344
static void pulse_op_cb(pa_stream *s, int success, void *user)
{
    TRACE("Success: %i\n", success);
    *(int*)user = success;
    pulse_broadcast();
}

345 346 347 348 349
static void silence_buffer(pa_sample_format_t format, BYTE *buffer, UINT32 bytes)
{
    memset(buffer, format == PA_SAMPLE_U8 ? 0x80 : 0, bytes);
}

350 351 352 353 354
static BOOL pulse_stream_valid(struct pulse_stream *stream)
{
    return pa_stream_get_state(stream->stream) == PA_STREAM_READY;
}

355 356 357
static HRESULT pulse_connect(const char *name)
{
    if (pulse_ctx && PA_CONTEXT_IS_GOOD(pa_context_get_state(pulse_ctx)))
358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395
        return S_OK;
    if (pulse_ctx)
        pa_context_unref(pulse_ctx);

    pulse_ctx = pa_context_new(pa_mainloop_get_api(pulse_ml), name);
    if (!pulse_ctx) {
        ERR("Failed to create context\n");
        return E_FAIL;
    }

    pa_context_set_state_callback(pulse_ctx, pulse_contextcallback, NULL);

    TRACE("libpulse protocol version: %u. API Version %u\n", pa_context_get_protocol_version(pulse_ctx), PA_API_VERSION);
    if (pa_context_connect(pulse_ctx, NULL, 0, NULL) < 0)
        goto fail;

    /* Wait for connection */
    while (pulse_cond_wait()) {
        pa_context_state_t state = pa_context_get_state(pulse_ctx);

        if (state == PA_CONTEXT_FAILED || state == PA_CONTEXT_TERMINATED)
            goto fail;

        if (state == PA_CONTEXT_READY)
            break;
    }

    TRACE("Connected to server %s with protocol version: %i.\n",
        pa_context_get_server(pulse_ctx),
        pa_context_get_server_protocol_version(pulse_ctx));
    return S_OK;

fail:
    pa_context_unref(pulse_ctx);
    pulse_ctx = NULL;
    return E_FAIL;
}

396
static UINT pulse_channel_map_to_channel_mask(const pa_channel_map *map)
397 398
{
    int i;
399
    UINT mask = 0;
400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428

    for (i = 0; i < map->channels; ++i) {
        switch (map->map[i]) {
            default: FIXME("Unhandled channel %s\n", pa_channel_position_to_string(map->map[i])); break;
            case PA_CHANNEL_POSITION_FRONT_LEFT: mask |= SPEAKER_FRONT_LEFT; break;
            case PA_CHANNEL_POSITION_MONO:
            case PA_CHANNEL_POSITION_FRONT_CENTER: mask |= SPEAKER_FRONT_CENTER; break;
            case PA_CHANNEL_POSITION_FRONT_RIGHT: mask |= SPEAKER_FRONT_RIGHT; break;
            case PA_CHANNEL_POSITION_REAR_LEFT: mask |= SPEAKER_BACK_LEFT; break;
            case PA_CHANNEL_POSITION_REAR_CENTER: mask |= SPEAKER_BACK_CENTER; break;
            case PA_CHANNEL_POSITION_REAR_RIGHT: mask |= SPEAKER_BACK_RIGHT; break;
            case PA_CHANNEL_POSITION_LFE: mask |= SPEAKER_LOW_FREQUENCY; break;
            case PA_CHANNEL_POSITION_SIDE_LEFT: mask |= SPEAKER_SIDE_LEFT; break;
            case PA_CHANNEL_POSITION_SIDE_RIGHT: mask |= SPEAKER_SIDE_RIGHT; break;
            case PA_CHANNEL_POSITION_TOP_CENTER: mask |= SPEAKER_TOP_CENTER; break;
            case PA_CHANNEL_POSITION_TOP_FRONT_LEFT: mask |= SPEAKER_TOP_FRONT_LEFT; break;
            case PA_CHANNEL_POSITION_TOP_FRONT_CENTER: mask |= SPEAKER_TOP_FRONT_CENTER; break;
            case PA_CHANNEL_POSITION_TOP_FRONT_RIGHT: mask |= SPEAKER_TOP_FRONT_RIGHT; break;
            case PA_CHANNEL_POSITION_TOP_REAR_LEFT: mask |= SPEAKER_TOP_BACK_LEFT; break;
            case PA_CHANNEL_POSITION_TOP_REAR_CENTER: mask |= SPEAKER_TOP_BACK_CENTER; break;
            case PA_CHANNEL_POSITION_TOP_REAR_RIGHT: mask |= SPEAKER_TOP_BACK_RIGHT; break;
            case PA_CHANNEL_POSITION_FRONT_LEFT_OF_CENTER: mask |= SPEAKER_FRONT_LEFT_OF_CENTER; break;
            case PA_CHANNEL_POSITION_FRONT_RIGHT_OF_CENTER: mask |= SPEAKER_FRONT_RIGHT_OF_CENTER; break;
        }
    }

    return mask;
}

429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454
static void fill_device_info(PhysDevice *dev, pa_proplist *p)
{
    const char *buffer;

    dev->bus_type = phys_device_bus_invalid;
    dev->vendor_id = 0;
    dev->product_id = 0;

    if (!p)
        return;

    if ((buffer = pa_proplist_gets(p, PA_PROP_DEVICE_BUS))) {
        if (!strcmp(buffer, "usb"))
            dev->bus_type = phys_device_bus_usb;
        else if (!strcmp(buffer, "pci"))
            dev->bus_type = phys_device_bus_pci;
    }

    if ((buffer = pa_proplist_gets(p, PA_PROP_DEVICE_VENDOR_ID)))
        dev->vendor_id = strtol(buffer, NULL, 16);

    if ((buffer = pa_proplist_gets(p, PA_PROP_DEVICE_PRODUCT_ID)))
        dev->product_id = strtol(buffer, NULL, 16);
}

static void pulse_add_device(struct list *list, pa_proplist *proplist, int index, EndpointFormFactor form,
455
                             UINT channel_mask, const char *pulse_name, const char *name)
456
{
457
    size_t len = strlen(pulse_name), name_len = strlen(name);
458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475
    PhysDevice *dev = malloc(FIELD_OFFSET(PhysDevice, pulse_name[len + 1]));
    WCHAR *wname;

    if (!dev)
        return;

    if (!(wname = malloc((name_len + 1) * sizeof(WCHAR)))) {
        free(dev);
        return;
    }

    if (!(name_len = ntdll_umbstowcs(name, name_len, wname, name_len)) ||
        !(dev->name = realloc(wname, (name_len + 1) * sizeof(WCHAR)))) {
        free(wname);
        free(dev);
        return;
    }
    dev->name[name_len] = 0;
476 477
    dev->form = form;
    dev->index = index;
478
    dev->channel_mask = channel_mask;
479
    fill_device_info(dev, proplist);
480 481 482 483 484
    memcpy(dev->pulse_name, pulse_name, len + 1);

    list_add_tail(list, &dev->entry);
}

485 486
static void pulse_phys_speakers_cb(pa_context *c, const pa_sink_info *i, int eol, void *userdata)
{
487
    struct list *speaker;
488
    UINT channel_mask;
489

490 491
    if (!i || !i->name || !i->name[0])
        return;
492
    channel_mask = pulse_channel_map_to_channel_mask(&i->channel_map);
493 494 495

    /* For default PulseAudio render device, OR together all of the
     * PKEY_AudioEndpoint_PhysicalSpeakers values of the sinks. */
496 497 498
    speaker = list_head(&g_phys_speakers);
    if (speaker)
        LIST_ENTRY(speaker, PhysDevice, entry)->channel_mask |= channel_mask;
499

500
    pulse_add_device(&g_phys_speakers, i->proplist, i->index, Speakers, channel_mask, i->name, i->description);
501 502 503 504 505 506
}

static void pulse_phys_sources_cb(pa_context *c, const pa_source_info *i, int eol, void *userdata)
{
    if (!i || !i->name || !i->name[0])
        return;
507
    pulse_add_device(&g_phys_sources, i->proplist, i->index,
508
        (i->monitor_of_sink == PA_INVALID_INDEX) ? Microphone : LineLevel, 0, i->name, i->description);
509 510 511 512 513 514 515 516 517 518
}

/* For most hardware on Windows, users must choose a configuration with an even
 * number of channels (stereo, quad, 5.1, 7.1). Users can then disable
 * channels, but those channels are still reported to applications from
 * GetMixFormat! Some applications behave badly if given an odd number of
 * channels (e.g. 2.1).  Here, we find the nearest configuration that Windows
 * would report for a given channel layout. */
static void convert_channel_map(const pa_channel_map *pa_map, WAVEFORMATEXTENSIBLE *fmt)
{
519
    UINT pa_mask = pulse_channel_map_to_channel_mask(pa_map);
520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675

    TRACE("got mask for PA: 0x%x\n", pa_mask);

    if (pa_map->channels == 1)
    {
        fmt->Format.nChannels = 1;
        fmt->dwChannelMask = pa_mask;
        return;
    }

    /* compare against known configurations and find smallest configuration
     * which is a superset of the given speakers */

    if (pa_map->channels <= 2 &&
            (pa_mask & ~KSAUDIO_SPEAKER_STEREO) == 0)
    {
        fmt->Format.nChannels = 2;
        fmt->dwChannelMask = KSAUDIO_SPEAKER_STEREO;
        return;
    }

    if (pa_map->channels <= 4 &&
            (pa_mask & ~KSAUDIO_SPEAKER_QUAD) == 0)
    {
        fmt->Format.nChannels = 4;
        fmt->dwChannelMask = KSAUDIO_SPEAKER_QUAD;
        return;
    }

    if (pa_map->channels <= 4 &&
            (pa_mask & ~KSAUDIO_SPEAKER_SURROUND) == 0)
    {
        fmt->Format.nChannels = 4;
        fmt->dwChannelMask = KSAUDIO_SPEAKER_SURROUND;
        return;
    }

    if (pa_map->channels <= 6 &&
            (pa_mask & ~KSAUDIO_SPEAKER_5POINT1) == 0)
    {
        fmt->Format.nChannels = 6;
        fmt->dwChannelMask = KSAUDIO_SPEAKER_5POINT1;
        return;
    }

    if (pa_map->channels <= 6 &&
            (pa_mask & ~KSAUDIO_SPEAKER_5POINT1_SURROUND) == 0)
    {
        fmt->Format.nChannels = 6;
        fmt->dwChannelMask = KSAUDIO_SPEAKER_5POINT1_SURROUND;
        return;
    }

    if (pa_map->channels <= 8 &&
            (pa_mask & ~KSAUDIO_SPEAKER_7POINT1) == 0)
    {
        fmt->Format.nChannels = 8;
        fmt->dwChannelMask = KSAUDIO_SPEAKER_7POINT1;
        return;
    }

    if (pa_map->channels <= 8 &&
            (pa_mask & ~KSAUDIO_SPEAKER_7POINT1_SURROUND) == 0)
    {
        fmt->Format.nChannels = 8;
        fmt->dwChannelMask = KSAUDIO_SPEAKER_7POINT1_SURROUND;
        return;
    }

    /* oddball format, report truthfully */
    fmt->Format.nChannels = pa_map->channels;
    fmt->dwChannelMask = pa_mask;
}

static void pulse_probe_settings(int render, WAVEFORMATEXTENSIBLE *fmt) {
    WAVEFORMATEX *wfx = &fmt->Format;
    pa_stream *stream;
    pa_channel_map map;
    pa_sample_spec ss;
    pa_buffer_attr attr;
    int ret;
    unsigned int length = 0;

    pa_channel_map_init_auto(&map, 2, PA_CHANNEL_MAP_ALSA);
    ss.rate = 48000;
    ss.format = PA_SAMPLE_FLOAT32LE;
    ss.channels = map.channels;

    attr.maxlength = -1;
    attr.tlength = -1;
    attr.minreq = attr.fragsize = pa_frame_size(&ss);
    attr.prebuf = 0;

    stream = pa_stream_new(pulse_ctx, "format test stream", &ss, &map);
    if (stream)
        pa_stream_set_state_callback(stream, pulse_stream_state, NULL);
    if (!stream)
        ret = -1;
    else if (render)
        ret = pa_stream_connect_playback(stream, NULL, &attr,
        PA_STREAM_START_CORKED|PA_STREAM_FIX_RATE|PA_STREAM_FIX_CHANNELS|PA_STREAM_EARLY_REQUESTS, NULL, NULL);
    else
        ret = pa_stream_connect_record(stream, NULL, &attr, PA_STREAM_START_CORKED|PA_STREAM_FIX_RATE|PA_STREAM_FIX_CHANNELS|PA_STREAM_EARLY_REQUESTS);
    if (ret >= 0) {
        while (pa_mainloop_iterate(pulse_ml, 1, &ret) >= 0 &&
                pa_stream_get_state(stream) == PA_STREAM_CREATING)
        {}
        if (pa_stream_get_state(stream) == PA_STREAM_READY) {
            ss = *pa_stream_get_sample_spec(stream);
            map = *pa_stream_get_channel_map(stream);
            if (render)
                length = pa_stream_get_buffer_attr(stream)->minreq;
            else
                length = pa_stream_get_buffer_attr(stream)->fragsize;
            pa_stream_disconnect(stream);
            while (pa_mainloop_iterate(pulse_ml, 1, &ret) >= 0 &&
                    pa_stream_get_state(stream) == PA_STREAM_READY)
            {}
        }
    }

    if (stream)
        pa_stream_unref(stream);

    if (length)
        pulse_def_period[!render] = pulse_min_period[!render] = pa_bytes_to_usec(10 * length, &ss);

    if (pulse_min_period[!render] < MinimumPeriod)
        pulse_min_period[!render] = MinimumPeriod;

    if (pulse_def_period[!render] < DefaultPeriod)
        pulse_def_period[!render] = DefaultPeriod;

    wfx->wFormatTag = WAVE_FORMAT_EXTENSIBLE;
    wfx->cbSize = sizeof(WAVEFORMATEXTENSIBLE) - sizeof(WAVEFORMATEX);

    convert_channel_map(&map, fmt);

    wfx->wBitsPerSample = 8 * pa_sample_size_of_format(ss.format);
    wfx->nSamplesPerSec = ss.rate;
    wfx->nBlockAlign = wfx->nChannels * wfx->wBitsPerSample / 8;
    wfx->nAvgBytesPerSec = wfx->nSamplesPerSec * wfx->nBlockAlign;
    if (ss.format != PA_SAMPLE_S24_32LE)
        fmt->Samples.wValidBitsPerSample = wfx->wBitsPerSample;
    else
        fmt->Samples.wValidBitsPerSample = 24;
    if (ss.format == PA_SAMPLE_FLOAT32LE)
        fmt->SubFormat = KSDATAFORMAT_SUBTYPE_IEEE_FLOAT;
    else
        fmt->SubFormat = KSDATAFORMAT_SUBTYPE_PCM;
}

/* some poorly-behaved applications call audio functions during DllMain, so we
 * have to do as much as possible without creating a new thread. this function
 * sets up a synchronous connection to verify the server is running and query
 * static data. */
676
static NTSTATUS pulse_test_connect(void *args)
677
{
678
    struct test_connect_params *params = args;
679
    struct pulse_config *config = params->config;
680 681 682 683 684 685 686 687
    pa_operation *o;
    int ret;

    pulse_lock();
    pulse_ml = pa_mainloop_new();

    pa_mainloop_set_poll_func(pulse_ml, pulse_poll_func, NULL);

688
    pulse_ctx = pa_context_new(pa_mainloop_get_api(pulse_ml), params->name);
689 690 691 692 693
    if (!pulse_ctx) {
        ERR("Failed to create context\n");
        pa_mainloop_free(pulse_ml);
        pulse_ml = NULL;
        pulse_unlock();
694
        params->result = E_FAIL;
695
        return STATUS_SUCCESS;
696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724
    }

    pa_context_set_state_callback(pulse_ctx, pulse_contextcallback, NULL);

    TRACE("libpulse protocol version: %u. API Version %u\n", pa_context_get_protocol_version(pulse_ctx), PA_API_VERSION);
    if (pa_context_connect(pulse_ctx, NULL, 0, NULL) < 0)
        goto fail;

    /* Wait for connection */
    while (pa_mainloop_iterate(pulse_ml, 1, &ret) >= 0) {
        pa_context_state_t state = pa_context_get_state(pulse_ctx);

        if (state == PA_CONTEXT_FAILED || state == PA_CONTEXT_TERMINATED)
            goto fail;

        if (state == PA_CONTEXT_READY)
            break;
    }

    if (pa_context_get_state(pulse_ctx) != PA_CONTEXT_READY)
        goto fail;

    TRACE("Test-connected to server %s with protocol version: %i.\n",
        pa_context_get_server(pulse_ctx),
        pa_context_get_server_protocol_version(pulse_ctx));

    pulse_probe_settings(1, &pulse_fmt[0]);
    pulse_probe_settings(0, &pulse_fmt[1]);

725 726 727 728
    free_phys_device_lists();
    list_init(&g_phys_speakers);
    list_init(&g_phys_sources);

729 730
    pulse_add_device(&g_phys_speakers, NULL, 0, Speakers, 0, "", "PulseAudio");
    pulse_add_device(&g_phys_sources, NULL, 0, Microphone, 0, "", "PulseAudio");
731

732 733 734 735 736 737 738 739
    o = pa_context_get_sink_info_list(pulse_ctx, &pulse_phys_speakers_cb, NULL);
    if (o) {
        while (pa_mainloop_iterate(pulse_ml, 1, &ret) >= 0 &&
                pa_operation_get_state(o) == PA_OPERATION_RUNNING)
        {}
        pa_operation_unref(o);
    }

740 741 742 743 744 745 746 747
    o = pa_context_get_source_info_list(pulse_ctx, &pulse_phys_sources_cb, NULL);
    if (o) {
        while (pa_mainloop_iterate(pulse_ml, 1, &ret) >= 0 &&
                pa_operation_get_state(o) == PA_OPERATION_RUNNING)
        {}
        pa_operation_unref(o);
    }

748 749 750 751 752 753 754 755 756 757 758 759 760 761
    pa_context_unref(pulse_ctx);
    pulse_ctx = NULL;
    pa_mainloop_free(pulse_ml);
    pulse_ml = NULL;

    config->modes[0].format = pulse_fmt[0];
    config->modes[0].def_period = pulse_def_period[0];
    config->modes[0].min_period = pulse_min_period[0];
    config->modes[1].format = pulse_fmt[1];
    config->modes[1].def_period = pulse_def_period[1];
    config->modes[1].min_period = pulse_min_period[1];

    pulse_unlock();

762
    params->result = S_OK;
763
    return STATUS_SUCCESS;
764 765 766 767 768 769 770

fail:
    pa_context_unref(pulse_ctx);
    pulse_ctx = NULL;
    pa_mainloop_free(pulse_ml);
    pulse_ml = NULL;
    pulse_unlock();
771
    params->result = E_FAIL;
772
    return STATUS_SUCCESS;
773 774
}

775
static UINT get_channel_mask(unsigned int channels)
776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847
{
    switch(channels) {
    case 0:
        return 0;
    case 1:
        return KSAUDIO_SPEAKER_MONO;
    case 2:
        return KSAUDIO_SPEAKER_STEREO;
    case 3:
        return KSAUDIO_SPEAKER_STEREO | SPEAKER_LOW_FREQUENCY;
    case 4:
        return KSAUDIO_SPEAKER_QUAD;    /* not _SURROUND */
    case 5:
        return KSAUDIO_SPEAKER_QUAD | SPEAKER_LOW_FREQUENCY;
    case 6:
        return KSAUDIO_SPEAKER_5POINT1; /* not 5POINT1_SURROUND */
    case 7:
        return KSAUDIO_SPEAKER_5POINT1 | SPEAKER_BACK_CENTER;
    case 8:
        return KSAUDIO_SPEAKER_7POINT1_SURROUND; /* Vista deprecates 7POINT1 */
    }
    FIXME("Unknown speaker configuration: %u\n", channels);
    return 0;
}

static const enum pa_channel_position pulse_pos_from_wfx[] = {
    PA_CHANNEL_POSITION_FRONT_LEFT,
    PA_CHANNEL_POSITION_FRONT_RIGHT,
    PA_CHANNEL_POSITION_FRONT_CENTER,
    PA_CHANNEL_POSITION_LFE,
    PA_CHANNEL_POSITION_REAR_LEFT,
    PA_CHANNEL_POSITION_REAR_RIGHT,
    PA_CHANNEL_POSITION_FRONT_LEFT_OF_CENTER,
    PA_CHANNEL_POSITION_FRONT_RIGHT_OF_CENTER,
    PA_CHANNEL_POSITION_REAR_CENTER,
    PA_CHANNEL_POSITION_SIDE_LEFT,
    PA_CHANNEL_POSITION_SIDE_RIGHT,
    PA_CHANNEL_POSITION_TOP_CENTER,
    PA_CHANNEL_POSITION_TOP_FRONT_LEFT,
    PA_CHANNEL_POSITION_TOP_FRONT_CENTER,
    PA_CHANNEL_POSITION_TOP_FRONT_RIGHT,
    PA_CHANNEL_POSITION_TOP_REAR_LEFT,
    PA_CHANNEL_POSITION_TOP_REAR_CENTER,
    PA_CHANNEL_POSITION_TOP_REAR_RIGHT
};

static HRESULT pulse_spec_from_waveformat(struct pulse_stream *stream, const WAVEFORMATEX *fmt)
{
    pa_channel_map_init(&stream->map);
    stream->ss.rate = fmt->nSamplesPerSec;
    stream->ss.format = PA_SAMPLE_INVALID;

    switch(fmt->wFormatTag) {
    case WAVE_FORMAT_IEEE_FLOAT:
        if (!fmt->nChannels || fmt->nChannels > 2 || fmt->wBitsPerSample != 32)
            break;
        stream->ss.format = PA_SAMPLE_FLOAT32LE;
        pa_channel_map_init_auto(&stream->map, fmt->nChannels, PA_CHANNEL_MAP_ALSA);
        break;
    case WAVE_FORMAT_PCM:
        if (!fmt->nChannels || fmt->nChannels > 2)
            break;
        if (fmt->wBitsPerSample == 8)
            stream->ss.format = PA_SAMPLE_U8;
        else if (fmt->wBitsPerSample == 16)
            stream->ss.format = PA_SAMPLE_S16LE;
        else
            return AUDCLNT_E_UNSUPPORTED_FORMAT;
        pa_channel_map_init_auto(&stream->map, fmt->nChannels, PA_CHANNEL_MAP_ALSA);
        break;
    case WAVE_FORMAT_EXTENSIBLE: {
        WAVEFORMATEXTENSIBLE *wfe = (WAVEFORMATEXTENSIBLE*)fmt;
848 849
        UINT mask = wfe->dwChannelMask;
        unsigned i = 0, j;
850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898
        if (fmt->cbSize != (sizeof(*wfe) - sizeof(*fmt)) && fmt->cbSize != sizeof(*wfe))
            break;
        if (IsEqualGUID(&wfe->SubFormat, &KSDATAFORMAT_SUBTYPE_IEEE_FLOAT) &&
            (!wfe->Samples.wValidBitsPerSample || wfe->Samples.wValidBitsPerSample == 32) &&
            fmt->wBitsPerSample == 32)
            stream->ss.format = PA_SAMPLE_FLOAT32LE;
        else if (IsEqualGUID(&wfe->SubFormat, &KSDATAFORMAT_SUBTYPE_PCM)) {
            DWORD valid = wfe->Samples.wValidBitsPerSample;
            if (!valid)
                valid = fmt->wBitsPerSample;
            if (!valid || valid > fmt->wBitsPerSample)
                break;
            switch (fmt->wBitsPerSample) {
                case 8:
                    if (valid == 8)
                        stream->ss.format = PA_SAMPLE_U8;
                    break;
                case 16:
                    if (valid == 16)
                        stream->ss.format = PA_SAMPLE_S16LE;
                    break;
                case 24:
                    if (valid == 24)
                        stream->ss.format = PA_SAMPLE_S24LE;
                    break;
                case 32:
                    if (valid == 24)
                        stream->ss.format = PA_SAMPLE_S24_32LE;
                    else if (valid == 32)
                        stream->ss.format = PA_SAMPLE_S32LE;
                    break;
                default:
                    return AUDCLNT_E_UNSUPPORTED_FORMAT;
            }
        }
        stream->map.channels = fmt->nChannels;
        if (!mask || (mask & (SPEAKER_ALL|SPEAKER_RESERVED)))
            mask = get_channel_mask(fmt->nChannels);
        for (j = 0; j < ARRAY_SIZE(pulse_pos_from_wfx) && i < fmt->nChannels; ++j) {
            if (mask & (1 << j))
                stream->map.map[i++] = pulse_pos_from_wfx[j];
        }

        /* Special case for mono since pulse appears to map it differently */
        if (mask == SPEAKER_FRONT_CENTER)
            stream->map.map[0] = PA_CHANNEL_POSITION_MONO;

        if (i < fmt->nChannels || (mask & SPEAKER_RESERVED)) {
            stream->map.channels = 0;
899
            ERR("Invalid channel mask: %i/%i and %x(%x)\n", i, fmt->nChannels, mask, (unsigned)wfe->dwChannelMask);
900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929
            break;
        }
        break;
        }
    case WAVE_FORMAT_ALAW:
    case WAVE_FORMAT_MULAW:
        if (fmt->wBitsPerSample != 8) {
            FIXME("Unsupported bpp %u for LAW\n", fmt->wBitsPerSample);
            return AUDCLNT_E_UNSUPPORTED_FORMAT;
        }
        if (fmt->nChannels != 1 && fmt->nChannels != 2) {
            FIXME("Unsupported channels %u for LAW\n", fmt->nChannels);
            return AUDCLNT_E_UNSUPPORTED_FORMAT;
        }
        stream->ss.format = fmt->wFormatTag == WAVE_FORMAT_MULAW ? PA_SAMPLE_ULAW : PA_SAMPLE_ALAW;
        pa_channel_map_init_auto(&stream->map, fmt->nChannels, PA_CHANNEL_MAP_ALSA);
        break;
    default:
        WARN("Unhandled tag %x\n", fmt->wFormatTag);
        return AUDCLNT_E_UNSUPPORTED_FORMAT;
    }
    stream->ss.channels = stream->map.channels;
    if (!pa_channel_map_valid(&stream->map) || stream->ss.format == PA_SAMPLE_INVALID) {
        ERR("Invalid format! Channel spec valid: %i, format: %i\n",
            pa_channel_map_valid(&stream->map), stream->ss.format);
        return AUDCLNT_E_UNSUPPORTED_FORMAT;
    }
    return S_OK;
}

930
static HRESULT pulse_stream_connect(struct pulse_stream *stream, const char *pulse_name, UINT32 period_bytes)
931
{
932
    pa_stream_flags_t flags = PA_STREAM_START_CORKED | PA_STREAM_START_UNMUTED | PA_STREAM_ADJUST_LATENCY;
933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956
    int ret;
    char buffer[64];
    static LONG number;
    pa_buffer_attr attr;

    ret = InterlockedIncrement(&number);
    sprintf(buffer, "audio stream #%i", ret);
    stream->stream = pa_stream_new(pulse_ctx, buffer, &stream->ss, &stream->map);

    if (!stream->stream) {
        WARN("pa_stream_new returned error %i\n", pa_context_errno(pulse_ctx));
        return AUDCLNT_E_ENDPOINT_CREATE_FAILED;
    }

    pa_stream_set_state_callback(stream->stream, pulse_stream_state, stream);
    pa_stream_set_buffer_attr_callback(stream->stream, pulse_attr_update, stream);
    pa_stream_set_moved_callback(stream->stream, pulse_attr_update, stream);

    /* PulseAudio will fill in correct values */
    attr.minreq = attr.fragsize = period_bytes;
    attr.tlength = period_bytes * 3;
    attr.maxlength = stream->bufsize_frames * pa_frame_size(&stream->ss);
    attr.prebuf = pa_frame_size(&stream->ss);
    dump_attr(&attr);
957 958 959 960 961 962 963

    /* If specific device was requested, use it exactly */
    if (pulse_name[0])
        flags |= PA_STREAM_DONT_MOVE;
    else
        pulse_name = NULL;  /* use default */

964
    if (stream->dataflow == eRender)
965
        ret = pa_stream_connect_playback(stream->stream, pulse_name, &attr, flags, NULL, NULL);
966
    else
967
        ret = pa_stream_connect_record(stream->stream, pulse_name, &attr, flags);
968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983
    if (ret < 0) {
        WARN("Returns %i\n", ret);
        return AUDCLNT_E_ENDPOINT_CREATE_FAILED;
    }
    while (pa_stream_get_state(stream->stream) == PA_STREAM_CREATING)
        pulse_cond_wait();
    if (pa_stream_get_state(stream->stream) != PA_STREAM_READY)
        return AUDCLNT_E_ENDPOINT_CREATE_FAILED;

    if (stream->dataflow == eRender) {
        pa_stream_set_underflow_callback(stream->stream, pulse_underflow_callback, stream);
        pa_stream_set_started_callback(stream->stream, pulse_started_callback, stream);
    }
    return S_OK;
}

984 985 986 987 988 989 990 991 992
static ULONG_PTR zero_bits(void)
{
#ifdef _WIN64
    return !NtCurrentTeb()->WowTebOffset ? 0 : 0x7fffffff;
#else
    return 0;
#endif
}

993
static NTSTATUS pulse_create_stream(void *args)
994
{
995
    struct create_stream_params *params = args;
996
    REFERENCE_TIME period, duration = params->duration;
997
    struct pulse_stream *stream;
998
    unsigned int i, bufsize_bytes;
999 1000
    HRESULT hr;

1001 1002
    pulse_lock();

1003
    if (FAILED(params->result = pulse_connect(params->name)))
1004 1005
    {
        pulse_unlock();
1006
        return STATUS_SUCCESS;
1007
    }
1008

1009
    if (!(stream = calloc(1, sizeof(*stream))))
1010 1011
    {
        pulse_unlock();
1012
        params->result = E_OUTOFMEMORY;
1013
        return STATUS_SUCCESS;
1014
    }
1015

1016
    stream->dataflow = params->dataflow;
1017 1018
    for (i = 0; i < ARRAY_SIZE(stream->vol); ++i)
        stream->vol[i] = 1.f;
1019

1020
    hr = pulse_spec_from_waveformat(stream, params->fmt);
1021
    TRACE("Obtaining format returns %08x\n", (unsigned)hr);
1022 1023 1024 1025

    if (FAILED(hr))
        goto exit;

1026
    period = pulse_def_period[stream->dataflow == eCapture];
1027 1028 1029 1030 1031
    if (duration < 3 * period)
        duration = 3 * period;

    stream->period_bytes = pa_frame_size(&stream->ss) * muldiv(period, stream->ss.rate, 10000000);

1032
    stream->bufsize_frames = ceil((duration / 10000000.) * params->fmt->nSamplesPerSec);
1033 1034 1035
    bufsize_bytes = stream->bufsize_frames * pa_frame_size(&stream->ss);
    stream->mmdev_period_usec = period / 10;

1036 1037
    stream->share = params->mode;
    stream->flags = params->flags;
1038
    hr = pulse_stream_connect(stream, params->pulse_name, stream->period_bytes);
1039 1040 1041
    if (SUCCEEDED(hr)) {
        UINT32 unalign;
        const pa_buffer_attr *attr = pa_stream_get_buffer_attr(stream->stream);
1042 1043
        SIZE_T size;

1044 1045 1046
        stream->attr = *attr;
        /* Update frames according to new size */
        dump_attr(attr);
1047
        if (stream->dataflow == eRender) {
1048
            size = stream->real_bufsize_bytes =
1049 1050
                stream->bufsize_frames * 2 * pa_frame_size(&stream->ss);
            if (NtAllocateVirtualMemory(GetCurrentProcess(), (void **)&stream->local_buffer,
1051
                                        zero_bits(), &size, MEM_COMMIT, PAGE_READWRITE))
1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062
                hr = E_OUTOFMEMORY;
        } else {
            UINT32 i, capture_packets;

            if ((unalign = bufsize_bytes % stream->period_bytes))
                bufsize_bytes += stream->period_bytes - unalign;
            stream->bufsize_frames = bufsize_bytes / pa_frame_size(&stream->ss);
            stream->real_bufsize_bytes = bufsize_bytes;

            capture_packets = stream->real_bufsize_bytes / stream->period_bytes;

1063
            size = stream->real_bufsize_bytes + capture_packets * sizeof(ACPacket);
1064
            if (NtAllocateVirtualMemory(GetCurrentProcess(), (void **)&stream->local_buffer,
1065
                                        zero_bits(), &size, MEM_COMMIT, PAGE_READWRITE))
1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081
                hr = E_OUTOFMEMORY;
            else {
                ACPacket *cur_packet = (ACPacket*)((char*)stream->local_buffer + stream->real_bufsize_bytes);
                BYTE *data = stream->local_buffer;
                silence_buffer(stream->ss.format, stream->local_buffer, stream->real_bufsize_bytes);
                list_init(&stream->packet_free_head);
                list_init(&stream->packet_filled_head);
                for (i = 0; i < capture_packets; ++i, ++cur_packet) {
                    list_add_tail(&stream->packet_free_head, &cur_packet->entry);
                    cur_packet->data = data;
                    data += stream->period_bytes;
                }
            }
        }
    }

1082
    *params->channel_count = stream->ss.channels;
1083
    *params->stream = (stream_handle)(UINT_PTR)stream;
1084

1085
exit:
1086
    if (FAILED(params->result = hr)) {
1087 1088 1089 1090
        free(stream->local_buffer);
        if (stream->stream) {
            pa_stream_disconnect(stream->stream);
            pa_stream_unref(stream->stream);
1091
            free(stream);
1092 1093 1094
        }
    }

1095
    pulse_unlock();
1096
    return STATUS_SUCCESS;
1097 1098
}

1099
static NTSTATUS pulse_release_stream(void *args)
1100
{
1101
    struct release_stream_params *params = args;
1102
    struct pulse_stream *stream = handle_get_stream(params->stream);
1103
    SIZE_T size;
1104 1105

    if(params->timer) {
1106
        stream->please_quit = TRUE;
1107 1108
        NtWaitForSingleObject(params->timer, FALSE, NULL);
        NtClose(params->timer);
1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119
    }

    pulse_lock();
    if (PA_STREAM_IS_GOOD(pa_stream_get_state(stream->stream))) {
        pa_stream_disconnect(stream->stream);
        while (PA_STREAM_IS_GOOD(pa_stream_get_state(stream->stream)))
            pulse_cond_wait();
    }
    pa_stream_unref(stream->stream);
    pulse_unlock();

1120 1121
    if (stream->tmp_buffer) {
        size = 0;
1122
        NtFreeVirtualMemory(GetCurrentProcess(), (void **)&stream->tmp_buffer,
1123 1124 1125 1126
                            &size, MEM_RELEASE);
    }
    if (stream->local_buffer) {
        size = 0;
1127
        NtFreeVirtualMemory(GetCurrentProcess(), (void **)&stream->local_buffer,
1128 1129
                            &size, MEM_RELEASE);
    }
1130 1131
    free(stream->peek_buffer);
    free(stream);
1132
    return STATUS_SUCCESS;
1133 1134
}

1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273
static int write_buffer(const struct pulse_stream *stream, BYTE *buffer, UINT32 bytes)
{
    const float *vol = stream->vol;
    UINT32 i, channels, mute = 0;
    BOOL adjust = FALSE;
    BYTE *end;

    if (!bytes) return 0;

    /* Adjust the buffer based on the volume for each channel */
    channels = stream->ss.channels;
    for (i = 0; i < channels; i++)
    {
        adjust |= vol[i] != 1.0f;
        if (vol[i] == 0.0f)
            mute++;
    }
    if (mute == channels)
    {
        silence_buffer(stream->ss.format, buffer, bytes);
        goto write;
    }
    if (!adjust) goto write;

    end = buffer + bytes;
    switch (stream->ss.format)
    {
#ifndef WORDS_BIGENDIAN
#define PROCESS_BUFFER(type) do         \
{                                       \
    type *p = (type*)buffer;            \
    do                                  \
    {                                   \
        for (i = 0; i < channels; i++)  \
            p[i] = p[i] * vol[i];       \
        p += i;                         \
    } while ((BYTE*)p != end);          \
} while (0)
    case PA_SAMPLE_S16LE:
        PROCESS_BUFFER(INT16);
        break;
    case PA_SAMPLE_S32LE:
        PROCESS_BUFFER(INT32);
        break;
    case PA_SAMPLE_FLOAT32LE:
        PROCESS_BUFFER(float);
        break;
#undef PROCESS_BUFFER
    case PA_SAMPLE_S24_32LE:
    {
        UINT32 *p = (UINT32*)buffer;
        do
        {
            for (i = 0; i < channels; i++)
            {
                p[i] = (INT32)((INT32)(p[i] << 8) * vol[i]);
                p[i] >>= 8;
            }
            p += i;
        } while ((BYTE*)p != end);
        break;
    }
    case PA_SAMPLE_S24LE:
    {
        /* do it 12 bytes at a time until it is no longer possible */
        UINT32 *q = (UINT32*)buffer;
        BYTE *p;

        i = 0;
        while (end - (BYTE*)q >= 12)
        {
            UINT32 v[4], k;
            v[0] = q[0] << 8;
            v[1] = q[1] << 16 | (q[0] >> 16 & ~0xff);
            v[2] = q[2] << 24 | (q[1] >> 8  & ~0xff);
            v[3] = q[2] & ~0xff;
            for (k = 0; k < 4; k++)
            {
                v[k] = (INT32)((INT32)v[k] * vol[i]);
                if (++i == channels) i = 0;
            }
            *q++ = v[0] >> 8  | (v[1] & ~0xff) << 16;
            *q++ = v[1] >> 16 | (v[2] & ~0xff) << 8;
            *q++ = v[2] >> 24 | (v[3] & ~0xff);
        }
        p = (BYTE*)q;
        while (p != end)
        {
            UINT32 v = (INT32)((INT32)(p[0] << 8 | p[1] << 16 | p[2] << 24) * vol[i]);
            *p++ = v >> 8  & 0xff;
            *p++ = v >> 16 & 0xff;
            *p++ = v >> 24;
            if (++i == channels) i = 0;
        }
        break;
    }
#endif
    case PA_SAMPLE_U8:
    {
        UINT8 *p = (UINT8*)buffer;
        do
        {
            for (i = 0; i < channels; i++)
                p[i] = (int)((p[i] - 128) * vol[i]) + 128;
            p += i;
        } while ((BYTE*)p != end);
        break;
    }
    case PA_SAMPLE_ALAW:
    {
        UINT8 *p = (UINT8*)buffer;
        do
        {
            for (i = 0; i < channels; i++)
                p[i] = mult_alaw_sample(p[i], vol[i]);
            p += i;
        } while ((BYTE*)p != end);
        break;
    }
    case PA_SAMPLE_ULAW:
    {
        UINT8 *p = (UINT8*)buffer;
        do
        {
            for (i = 0; i < channels; i++)
                p[i] = mult_ulaw_sample(p[i], vol[i]);
            p += i;
        } while ((BYTE*)p != end);
        break;
    }
    default:
        TRACE("Unhandled format %i, not adjusting volume.\n", stream->ss.format);
        break;
    }

write:
    return pa_stream_write(stream->stream, buffer, bytes, NULL, 0, PA_SEEK_RELATIVE);
}

1274
static void pulse_write(struct pulse_stream *stream)
1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287
{
    /* write as much data to PA as we can */
    UINT32 to_write;
    BYTE *buf = stream->local_buffer + stream->pa_offs_bytes;
    UINT32 bytes = pa_stream_writable_size(stream->stream);

    if (stream->just_underran)
    {
        /* prebuffer with silence if needed */
        if(stream->pa_held_bytes < bytes){
            to_write = bytes - stream->pa_held_bytes;
            TRACE("prebuffering %u frames of silence\n",
                    (int)(to_write / pa_frame_size(&stream->ss)));
1288
            buf = calloc(1, to_write);
1289
            pa_stream_write(stream->stream, buf, to_write, NULL, 0, PA_SEEK_RELATIVE);
1290
            free(buf);
1291 1292 1293 1294 1295 1296
        }

        stream->just_underran = FALSE;
    }

    buf = stream->local_buffer + stream->pa_offs_bytes;
1297
    TRACE("held: %lu, avail: %u\n", stream->pa_held_bytes, bytes);
1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319
    bytes = min(stream->pa_held_bytes, bytes);

    if (stream->pa_offs_bytes + bytes > stream->real_bufsize_bytes)
    {
        to_write = stream->real_bufsize_bytes - stream->pa_offs_bytes;
        TRACE("writing small chunk of %u bytes\n", to_write);
        write_buffer(stream, buf, to_write);
        stream->pa_held_bytes -= to_write;
        to_write = bytes - to_write;
        stream->pa_offs_bytes = 0;
        buf = stream->local_buffer;
    }
    else
        to_write = bytes;

    TRACE("writing main chunk of %u bytes\n", to_write);
    write_buffer(stream, buf, to_write);
    stream->pa_offs_bytes += to_write;
    stream->pa_offs_bytes %= stream->real_bufsize_bytes;
    stream->pa_held_bytes -= to_write;
}

1320
static void pulse_read(struct pulse_stream *stream)
1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397
{
    size_t bytes = pa_stream_readable_size(stream->stream);

    TRACE("Readable total: %zu, fragsize: %u\n", bytes, pa_stream_get_buffer_attr(stream->stream)->fragsize);

    bytes += stream->peek_len - stream->peek_ofs;

    while (bytes >= stream->period_bytes)
    {
        BYTE *dst = NULL, *src;
        size_t src_len, copy, rem = stream->period_bytes;

        if (stream->started)
        {
            LARGE_INTEGER stamp, freq;
            ACPacket *p, *next;

            if (!(p = (ACPacket*)list_head(&stream->packet_free_head)))
            {
                p = (ACPacket*)list_head(&stream->packet_filled_head);
                if (!p) return;
                if (!p->discont) {
                    next = (ACPacket*)p->entry.next;
                    next->discont = 1;
                } else
                    p = (ACPacket*)list_tail(&stream->packet_filled_head);
            }
            else
            {
                stream->held_bytes += stream->period_bytes;
            }
            NtQueryPerformanceCounter(&stamp, &freq);
            p->qpcpos = (stamp.QuadPart * (INT64)10000000) / freq.QuadPart;
            p->discont = 0;
            list_remove(&p->entry);
            list_add_tail(&stream->packet_filled_head, &p->entry);

            dst = p->data;
        }

        while (rem)
        {
            if (stream->peek_len)
            {
                copy = min(rem, stream->peek_len - stream->peek_ofs);

                if (dst)
                {
                    memcpy(dst, stream->peek_buffer + stream->peek_ofs, copy);
                    dst += copy;
                }

                rem -= copy;
                stream->peek_ofs += copy;
                if(stream->peek_len == stream->peek_ofs)
                    stream->peek_len = stream->peek_ofs = 0;

            }
            else if (pa_stream_peek(stream->stream, (const void**)&src, &src_len) == 0 && src_len)
            {
                copy = min(rem, src_len);

                if (dst) {
                    if(src)
                        memcpy(dst, src, copy);
                    else
                        silence_buffer(stream->ss.format, dst, copy);

                    dst += copy;
                }

                rem -= copy;

                if (copy < src_len)
                {
                    if (src_len > stream->peek_buffer_len)
                    {
1398 1399
                        free(stream->peek_buffer);
                        stream->peek_buffer = malloc(src_len);
1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419
                        stream->peek_buffer_len = src_len;
                    }

                    if(src)
                        memcpy(stream->peek_buffer, src + copy, src_len - copy);
                    else
                        silence_buffer(stream->ss.format, stream->peek_buffer, src_len - copy);

                    stream->peek_len = src_len - copy;
                    stream->peek_ofs = 0;
                }

                pa_stream_drop(stream->stream);
            }
        }

        bytes -= stream->period_bytes;
    }
}

1420
static NTSTATUS pulse_timer_loop(void *args)
1421
{
1422
    struct timer_loop_params *params = args;
1423
    struct pulse_stream *stream = handle_get_stream(params->stream);
1424
    LARGE_INTEGER delay;
1425
    pa_usec_t last_time;
1426 1427 1428 1429 1430 1431
    UINT32 adv_bytes;
    int success;
    pa_operation *o;

    pulse_lock();
    delay.QuadPart = -stream->mmdev_period_usec * 10;
1432
    pa_stream_get_time(stream->stream, &last_time);
1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455
    pulse_unlock();

    while (!stream->please_quit)
    {
        pa_usec_t now, adv_usec = 0;
        int err;

        NtDelayExecution(FALSE, &delay);

        pulse_lock();

        delay.QuadPart = -stream->mmdev_period_usec * 10;

        o = pa_stream_update_timing_info(stream->stream, pulse_op_cb, &success);
        if (o)
        {
            while (pa_operation_get_state(o) == PA_OPERATION_RUNNING)
                pulse_cond_wait();
            pa_operation_unref(o);
        }
        err = pa_stream_get_time(stream->stream, &now);
        if (err == 0)
        {
1456
            TRACE("got now: %s, last time: %s\n", wine_dbgstr_longlong(now), wine_dbgstr_longlong(last_time));
1457 1458 1459 1460
            if (stream->started && (stream->dataflow == eCapture || stream->held_bytes))
            {
                if(stream->just_underran)
                {
1461
                    last_time = now;
1462 1463 1464 1465 1466 1467
                    stream->just_started = TRUE;
                }

                if (stream->just_started)
                {
                    /* let it play out a period to absorb some latency and get accurate timing */
1468
                    pa_usec_t diff = now - last_time;
1469 1470 1471 1472

                    if (diff > stream->mmdev_period_usec)
                    {
                        stream->just_started = FALSE;
1473
                        last_time = now;
1474 1475 1476 1477
                    }
                }
                else
                {
1478
                    INT32 adjust = last_time + stream->mmdev_period_usec - now;
1479

1480
                    adv_usec = now - last_time;
1481 1482 1483 1484 1485 1486 1487 1488

                    if(adjust > ((INT32)(stream->mmdev_period_usec / 2)))
                        adjust = stream->mmdev_period_usec / 2;
                    else if(adjust < -((INT32)(stream->mmdev_period_usec / 2)))
                        adjust = -1 * stream->mmdev_period_usec / 2;

                    delay.QuadPart = -(stream->mmdev_period_usec + adjust) * 10;

1489
                    last_time += stream->mmdev_period_usec;
1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508
                }

                if (stream->dataflow == eRender)
                {
                    pulse_write(stream);

                    /* regardless of what PA does, advance one period */
                    adv_bytes = min(stream->period_bytes, stream->held_bytes);
                    stream->lcl_offs_bytes += adv_bytes;
                    stream->lcl_offs_bytes %= stream->real_bufsize_bytes;
                    stream->held_bytes -= adv_bytes;
                }
                else if(stream->dataflow == eCapture)
                {
                    pulse_read(stream);
                }
            }
            else
            {
1509
                last_time = now;
1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523
                delay.QuadPart = -stream->mmdev_period_usec * 10;
            }
        }

        if (stream->event)
            NtSetEvent(stream->event, NULL);

        TRACE("%p after update, adv usec: %d, held: %u, delay usec: %u\n",
                stream, (int)adv_usec,
                (int)(stream->held_bytes/ pa_frame_size(&stream->ss)),
                (unsigned int)(-delay.QuadPart / 10));

        pulse_unlock();
    }
1524 1525

    return STATUS_SUCCESS;
1526 1527
}

1528
static NTSTATUS pulse_start(void *args)
1529
{
1530
    struct start_params *params = args;
1531
    struct pulse_stream *stream = handle_get_stream(params->stream);
1532 1533 1534
    int success;
    pa_operation *o;

1535
    params->result = S_OK;
1536 1537 1538 1539
    pulse_lock();
    if (!pulse_stream_valid(stream))
    {
        pulse_unlock();
1540
        params->result = S_OK;
1541
        return STATUS_SUCCESS;
1542 1543 1544 1545 1546
    }

    if ((stream->flags & AUDCLNT_STREAMFLAGS_EVENTCALLBACK) && !stream->event)
    {
        pulse_unlock();
1547
        params->result = AUDCLNT_E_EVENTHANDLE_NOT_SET;
1548
        return STATUS_SUCCESS;
1549 1550 1551 1552 1553
    }

    if (stream->started)
    {
        pulse_unlock();
1554
        params->result = AUDCLNT_E_NOT_STOPPED;
1555
        return STATUS_SUCCESS;
1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571
    }

    pulse_write(stream);

    if (pa_stream_is_corked(stream->stream))
    {
        o = pa_stream_cork(stream->stream, 0, pulse_op_cb, &success);
        if (o)
        {
            while(pa_operation_get_state(o) == PA_OPERATION_RUNNING)
                pulse_cond_wait();
            pa_operation_unref(o);
        }
        else
            success = 0;
        if (!success)
1572
            params->result = E_FAIL;
1573 1574
    }

1575
    if (SUCCEEDED(params->result))
1576 1577 1578 1579 1580
    {
        stream->started = TRUE;
        stream->just_started = TRUE;
    }
    pulse_unlock();
1581
    return STATUS_SUCCESS;
1582 1583
}

1584
static NTSTATUS pulse_stop(void *args)
1585
{
1586
    struct stop_params *params = args;
1587
    struct pulse_stream *stream = handle_get_stream(params->stream);
1588 1589 1590 1591 1592 1593 1594
    pa_operation *o;
    int success;

    pulse_lock();
    if (!pulse_stream_valid(stream))
    {
        pulse_unlock();
1595
        params->result = AUDCLNT_E_DEVICE_INVALIDATED;
1596
        return STATUS_SUCCESS;
1597 1598 1599 1600 1601
    }

    if (!stream->started)
    {
        pulse_unlock();
1602
        params->result = S_FALSE;
1603
        return STATUS_SUCCESS;
1604 1605
    }

1606
    params->result = S_OK;
1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618
    if (stream->dataflow == eRender)
    {
        o = pa_stream_cork(stream->stream, 1, pulse_op_cb, &success);
        if (o)
        {
            while(pa_operation_get_state(o) == PA_OPERATION_RUNNING)
                pulse_cond_wait();
            pa_operation_unref(o);
        }
        else
            success = 0;
        if (!success)
1619
            params->result = E_FAIL;
1620
    }
1621
    if (SUCCEEDED(params->result))
1622 1623
        stream->started = FALSE;
    pulse_unlock();
1624
    return STATUS_SUCCESS;
1625 1626
}

1627
static NTSTATUS pulse_reset(void *args)
1628
{
1629
    struct reset_params *params = args;
1630
    struct pulse_stream *stream = handle_get_stream(params->stream);
1631

1632 1633 1634 1635
    pulse_lock();
    if (!pulse_stream_valid(stream))
    {
        pulse_unlock();
1636
        params->result = AUDCLNT_E_DEVICE_INVALIDATED;
1637
        return STATUS_SUCCESS;
1638 1639 1640 1641 1642
    }

    if (stream->started)
    {
        pulse_unlock();
1643
        params->result = AUDCLNT_E_NOT_STOPPED;
1644
        return STATUS_SUCCESS;
1645 1646 1647 1648 1649
    }

    if (stream->locked)
    {
        pulse_unlock();
1650
        params->result = AUDCLNT_E_BUFFER_OPERATION_PENDING;
1651
        return STATUS_SUCCESS;
1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688
    }

    if (stream->dataflow == eRender)
    {
        /* If there is still data in the render buffer it needs to be removed from the server */
        int success = 0;
        if (stream->held_bytes)
        {
            pa_operation *o = pa_stream_flush(stream->stream, pulse_op_cb, &success);
            if (o)
            {
                while (pa_operation_get_state(o) == PA_OPERATION_RUNNING)
                    pulse_cond_wait();
                pa_operation_unref(o);
            }
        }
        if (success || !stream->held_bytes)
        {
            stream->clock_lastpos = stream->clock_written = 0;
            stream->pa_offs_bytes = stream->lcl_offs_bytes = 0;
            stream->held_bytes = stream->pa_held_bytes = 0;
        }
    }
    else
    {
        ACPacket *p;
        stream->clock_written += stream->held_bytes;
        stream->held_bytes = 0;

        if ((p = stream->locked_ptr))
        {
            stream->locked_ptr = NULL;
            list_add_tail(&stream->packet_free_head, &p->entry);
        }
        list_move_tail(&stream->packet_free_head, &stream->packet_filled_head);
    }
    pulse_unlock();
1689
    params->result = S_OK;
1690
    return STATUS_SUCCESS;
1691 1692
}

1693
static BOOL alloc_tmp_buffer(struct pulse_stream *stream, SIZE_T bytes)
1694
{
1695 1696
    SIZE_T size;

1697
    if (stream->tmp_buffer_bytes >= bytes)
1698 1699 1700 1701
        return TRUE;

    if (stream->tmp_buffer)
    {
1702
        size = 0;
1703
        NtFreeVirtualMemory(GetCurrentProcess(), (void **)&stream->tmp_buffer,
1704
                            &size, MEM_RELEASE);
1705 1706 1707 1708
        stream->tmp_buffer = NULL;
        stream->tmp_buffer_bytes = 0;
    }
    if (NtAllocateVirtualMemory(GetCurrentProcess(), (void **)&stream->tmp_buffer,
1709
                                zero_bits(), &bytes, MEM_COMMIT, PAGE_READWRITE))
1710
        return FALSE;
1711 1712

    stream->tmp_buffer_bytes = bytes;
1713
    return TRUE;
1714 1715
}

1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732
static UINT32 pulse_render_padding(struct pulse_stream *stream)
{
    return stream->held_bytes / pa_frame_size(&stream->ss);
}

static UINT32 pulse_capture_padding(struct pulse_stream *stream)
{
    ACPacket *packet = stream->locked_ptr;
    if (!packet && !list_empty(&stream->packet_filled_head))
    {
        packet = (ACPacket*)list_head(&stream->packet_filled_head);
        stream->locked_ptr = packet;
        list_remove(&packet->entry);
    }
    return stream->held_bytes / pa_frame_size(&stream->ss);
}

1733
static NTSTATUS pulse_get_render_buffer(void *args)
1734
{
1735
    struct get_render_buffer_params *params = args;
1736
    struct pulse_stream *stream = handle_get_stream(params->stream);
1737 1738 1739 1740 1741 1742 1743
    size_t bytes;
    UINT32 wri_offs_bytes;

    pulse_lock();
    if (!pulse_stream_valid(stream))
    {
        pulse_unlock();
1744
        params->result = AUDCLNT_E_DEVICE_INVALIDATED;
1745
        return STATUS_SUCCESS;
1746 1747 1748 1749 1750
    }

    if (stream->locked)
    {
        pulse_unlock();
1751
        params->result = AUDCLNT_E_OUT_OF_ORDER;
1752
        return STATUS_SUCCESS;
1753 1754
    }

1755
    if (!params->frames)
1756 1757
    {
        pulse_unlock();
1758 1759
        *params->data = NULL;
        params->result = S_OK;
1760
        return STATUS_SUCCESS;
1761 1762
    }

1763
    if (stream->held_bytes / pa_frame_size(&stream->ss) + params->frames > stream->bufsize_frames)
1764 1765
    {
        pulse_unlock();
1766
        params->result = AUDCLNT_E_BUFFER_TOO_LARGE;
1767
        return STATUS_SUCCESS;
1768 1769
    }

1770
    bytes = params->frames * pa_frame_size(&stream->ss);
1771 1772 1773
    wri_offs_bytes = (stream->lcl_offs_bytes + stream->held_bytes) % stream->real_bufsize_bytes;
    if (wri_offs_bytes + bytes > stream->real_bufsize_bytes)
    {
1774 1775 1776
        if (!alloc_tmp_buffer(stream, bytes))
        {
            pulse_unlock();
1777
            params->result = E_OUTOFMEMORY;
1778
            return STATUS_SUCCESS;
1779
        }
1780
        *params->data = stream->tmp_buffer;
1781 1782 1783 1784
        stream->locked = -bytes;
    }
    else
    {
1785
        *params->data = stream->local_buffer + wri_offs_bytes;
1786 1787 1788
        stream->locked = bytes;
    }

1789
    silence_buffer(stream->ss.format, *params->data, bytes);
1790 1791

    pulse_unlock();
1792
    params->result = S_OK;
1793
    return STATUS_SUCCESS;
1794 1795
}

1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811
static void pulse_wrap_buffer(struct pulse_stream *stream, BYTE *buffer, UINT32 written_bytes)
{
    UINT32 wri_offs_bytes = (stream->lcl_offs_bytes + stream->held_bytes) % stream->real_bufsize_bytes;
    UINT32 chunk_bytes = stream->real_bufsize_bytes - wri_offs_bytes;

    if (written_bytes <= chunk_bytes)
    {
        memcpy(stream->local_buffer + wri_offs_bytes, buffer, written_bytes);
    }
    else
    {
        memcpy(stream->local_buffer + wri_offs_bytes, buffer, chunk_bytes);
        memcpy(stream->local_buffer, buffer + chunk_bytes, written_bytes - chunk_bytes);
    }
}

1812
static NTSTATUS pulse_release_render_buffer(void *args)
1813
{
1814
    struct release_render_buffer_params *params = args;
1815
    struct pulse_stream *stream = handle_get_stream(params->stream);
1816 1817 1818 1819
    UINT32 written_bytes;
    BYTE *buffer;

    pulse_lock();
1820
    if (!stream->locked || !params->written_frames)
1821 1822 1823
    {
        stream->locked = 0;
        pulse_unlock();
1824
        params->result = params->written_frames ? AUDCLNT_E_OUT_OF_ORDER : S_OK;
1825
        return STATUS_SUCCESS;
1826 1827
    }

1828 1829
    if (params->written_frames * pa_frame_size(&stream->ss) >
        (stream->locked >= 0 ? stream->locked : -stream->locked))
1830 1831
    {
        pulse_unlock();
1832
        params->result = AUDCLNT_E_INVALID_SIZE;
1833
        return STATUS_SUCCESS;
1834 1835 1836 1837 1838 1839 1840
    }

    if (stream->locked >= 0)
        buffer = stream->local_buffer + (stream->lcl_offs_bytes + stream->held_bytes) % stream->real_bufsize_bytes;
    else
        buffer = stream->tmp_buffer;

1841 1842
    written_bytes = params->written_frames * pa_frame_size(&stream->ss);
    if (params->flags & AUDCLNT_BUFFERFLAGS_SILENT)
1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858
        silence_buffer(stream->ss.format, buffer, written_bytes);

    if (stream->locked < 0)
        pulse_wrap_buffer(stream, buffer, written_bytes);

    stream->held_bytes += written_bytes;
    stream->pa_held_bytes += written_bytes;
    if (stream->pa_held_bytes > stream->real_bufsize_bytes)
    {
        stream->pa_offs_bytes += stream->pa_held_bytes - stream->real_bufsize_bytes;
        stream->pa_offs_bytes %= stream->real_bufsize_bytes;
        stream->pa_held_bytes = stream->real_bufsize_bytes;
    }
    stream->clock_written += written_bytes;
    stream->locked = 0;

1859 1860 1861
    /* push as much data as we can to pulseaudio too */
    pulse_write(stream);

1862
    TRACE("Released %u, held %lu\n", params->written_frames, stream->held_bytes / pa_frame_size(&stream->ss));
1863 1864

    pulse_unlock();
1865
    params->result = S_OK;
1866
    return STATUS_SUCCESS;
1867 1868
}

1869
static NTSTATUS pulse_get_capture_buffer(void *args)
1870
{
1871
    struct get_capture_buffer_params *params = args;
1872
    struct pulse_stream *stream = handle_get_stream(params->stream);
1873 1874 1875 1876 1877 1878
    ACPacket *packet;

    pulse_lock();
    if (!pulse_stream_valid(stream))
    {
        pulse_unlock();
1879
        params->result = AUDCLNT_E_DEVICE_INVALIDATED;
1880
        return STATUS_SUCCESS;
1881 1882 1883 1884
    }
    if (stream->locked)
    {
        pulse_unlock();
1885
        params->result = AUDCLNT_E_OUT_OF_ORDER;
1886
        return STATUS_SUCCESS;
1887 1888 1889 1890 1891
    }

    pulse_capture_padding(stream);
    if ((packet = stream->locked_ptr))
    {
1892 1893
        *params->frames = stream->period_bytes / pa_frame_size(&stream->ss);
        *params->flags = 0;
1894
        if (packet->discont)
1895 1896
            *params->flags |= AUDCLNT_BUFFERFLAGS_DATA_DISCONTINUITY;
        if (params->devpos)
1897 1898
        {
            if (packet->discont)
1899
                *params->devpos = (stream->clock_written + stream->period_bytes) / pa_frame_size(&stream->ss);
1900
            else
1901
                *params->devpos = stream->clock_written / pa_frame_size(&stream->ss);
1902
        }
1903 1904 1905
        if (params->qpcpos)
            *params->qpcpos = packet->qpcpos;
        *params->data = packet->data;
1906 1907
    }
    else
1908 1909
        *params->frames = 0;
    stream->locked = *params->frames;
1910
    pulse_unlock();
1911
    params->result =  *params->frames ? S_OK : AUDCLNT_S_BUFFER_EMPTY;
1912
    return STATUS_SUCCESS;
1913 1914
}

1915
static NTSTATUS pulse_release_capture_buffer(void *args)
1916
{
1917
    struct release_capture_buffer_params *params = args;
1918
    struct pulse_stream *stream = handle_get_stream(params->stream);
1919

1920
    pulse_lock();
1921
    if (!stream->locked && params->done)
1922 1923
    {
        pulse_unlock();
1924
        params->result = AUDCLNT_E_OUT_OF_ORDER;
1925
        return STATUS_SUCCESS;
1926
    }
1927
    if (params->done && stream->locked != params->done)
1928 1929
    {
        pulse_unlock();
1930
        params->result = AUDCLNT_E_INVALID_SIZE;
1931
        return STATUS_SUCCESS;
1932
    }
1933
    if (params->done)
1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945
    {
        ACPacket *packet = stream->locked_ptr;
        stream->locked_ptr = NULL;
        stream->held_bytes -= stream->period_bytes;
        if (packet->discont)
            stream->clock_written += 2 * stream->period_bytes;
        else
            stream->clock_written += stream->period_bytes;
        list_add_tail(&stream->packet_free_head, &packet->entry);
    }
    stream->locked = 0;
    pulse_unlock();
1946
    params->result = S_OK;
1947
    return STATUS_SUCCESS;
1948 1949
}

1950
static NTSTATUS pulse_get_buffer_size(void *args)
1951
{
1952
    struct get_buffer_size_params *params = args;
1953
    struct pulse_stream *stream = handle_get_stream(params->stream);
1954

1955
    params->result = S_OK;
1956 1957

    pulse_lock();
1958
    if (!pulse_stream_valid(stream))
1959
        params->result = AUDCLNT_E_DEVICE_INVALIDATED;
1960
    else
1961
        *params->size = stream->bufsize_frames;
1962
    pulse_unlock();
1963 1964

    return STATUS_SUCCESS;
1965 1966
}

1967
static NTSTATUS pulse_get_latency(void *args)
1968
{
1969
    struct get_latency_params *params = args;
1970
    struct pulse_stream *stream = handle_get_stream(params->stream);
1971 1972 1973 1974 1975 1976
    const pa_buffer_attr *attr;
    REFERENCE_TIME lat;

    pulse_lock();
    if (!pulse_stream_valid(stream)) {
        pulse_unlock();
1977
        params->result = AUDCLNT_E_DEVICE_INVALIDATED;
1978
        return STATUS_SUCCESS;
1979 1980 1981 1982 1983 1984
    }
    attr = pa_stream_get_buffer_attr(stream->stream);
    if (stream->dataflow == eRender)
        lat = attr->minreq / pa_frame_size(&stream->ss);
    else
        lat = attr->fragsize / pa_frame_size(&stream->ss);
1985
    *params->latency = (lat * 10000000) / stream->ss.rate + pulse_def_period[0];
1986
    pulse_unlock();
1987
    TRACE("Latency: %u ms\n", (unsigned)(*params->latency / 10000));
1988
    params->result = S_OK;
1989
    return STATUS_SUCCESS;
1990 1991
}

1992
static NTSTATUS pulse_get_current_padding(void *args)
1993
{
1994
    struct get_current_padding_params *params = args;
1995
    struct pulse_stream *stream = handle_get_stream(params->stream);
1996

1997 1998 1999 2000
    pulse_lock();
    if (!pulse_stream_valid(stream))
    {
        pulse_unlock();
2001
        params->result = AUDCLNT_E_DEVICE_INVALIDATED;
2002
        return STATUS_SUCCESS;
2003 2004 2005
    }

    if (stream->dataflow == eRender)
2006
        *params->padding = pulse_render_padding(stream);
2007
    else
2008
        *params->padding = pulse_capture_padding(stream);
2009 2010
    pulse_unlock();

2011 2012 2013
    TRACE("%p Pad: %u ms (%u)\n", stream, muldiv(*params->padding, 1000, stream->ss.rate),
          *params->padding);
    params->result = S_OK;
2014
    return STATUS_SUCCESS;
2015 2016
}

2017
static NTSTATUS pulse_get_next_packet_size(void *args)
2018
{
2019
    struct get_next_packet_size_params *params = args;
2020
    struct pulse_stream *stream = handle_get_stream(params->stream);
2021

2022 2023 2024
    pulse_lock();
    pulse_capture_padding(stream);
    if (stream->locked_ptr)
2025
        *params->frames = stream->period_bytes / pa_frame_size(&stream->ss);
2026
    else
2027
        *params->frames = 0;
2028
    pulse_unlock();
2029
    params->result = S_OK;
2030 2031

    return STATUS_SUCCESS;
2032 2033
}

2034
static NTSTATUS pulse_get_frequency(void *args)
2035
{
2036
    struct get_frequency_params *params = args;
2037
    struct pulse_stream *stream = handle_get_stream(params->stream);
2038

2039 2040 2041 2042
    pulse_lock();
    if (!pulse_stream_valid(stream))
    {
        pulse_unlock();
2043
        params->result = AUDCLNT_E_DEVICE_INVALIDATED;
2044
        return STATUS_SUCCESS;
2045 2046
    }

2047
    *params->freq = stream->ss.rate;
2048
    if (stream->share == AUDCLNT_SHAREMODE_SHARED)
2049
        *params->freq *= pa_frame_size(&stream->ss);
2050
    pulse_unlock();
2051
    params->result = S_OK;
2052
    return STATUS_SUCCESS;
2053 2054
}

2055
static NTSTATUS pulse_get_position(void *args)
2056
{
2057
    struct get_position_params *params = args;
2058
    struct pulse_stream *stream = handle_get_stream(params->stream);
2059

2060 2061 2062 2063
    pulse_lock();
    if (!pulse_stream_valid(stream))
    {
        pulse_unlock();
2064
        params->result = AUDCLNT_E_DEVICE_INVALIDATED;
2065
        return STATUS_SUCCESS;
2066 2067
    }

2068
    *params->pos = stream->clock_written - stream->held_bytes;
2069

2070 2071
    if (stream->share == AUDCLNT_SHAREMODE_EXCLUSIVE || params->device)
        *params->pos /= pa_frame_size(&stream->ss);
2072 2073

    /* Make time never go backwards */
2074 2075
    if (*params->pos < stream->clock_lastpos)
        *params->pos = stream->clock_lastpos;
2076
    else
2077
        stream->clock_lastpos = *params->pos;
2078 2079
    pulse_unlock();

2080
    TRACE("%p Position: %u\n", stream, (unsigned)*params->pos);
2081

2082
    if (params->qpctime)
2083 2084 2085
    {
        LARGE_INTEGER stamp, freq;
        NtQueryPerformanceCounter(&stamp, &freq);
2086
        *params->qpctime = (stamp.QuadPart * (INT64)10000000) / freq.QuadPart;
2087 2088
    }

2089
    params->result = S_OK;
2090
    return STATUS_SUCCESS;
2091 2092
}

2093
static NTSTATUS pulse_set_volumes(void *args)
2094
{
2095
    struct set_volumes_params *params = args;
2096
    struct pulse_stream *stream = handle_get_stream(params->stream);
2097 2098 2099
    unsigned int i;

    for (i = 0; i < stream->ss.channels; i++)
2100
        stream->vol[i] = params->volumes[i] * params->master_volume * params->session_volumes[i];
2101 2102

    return STATUS_SUCCESS;
2103 2104
}

2105
static NTSTATUS pulse_set_event_handle(void *args)
2106
{
2107
    struct set_event_handle_params *params = args;
2108
    struct pulse_stream *stream = handle_get_stream(params->stream);
2109 2110 2111 2112 2113 2114 2115 2116 2117 2118
    HRESULT hr = S_OK;

    pulse_lock();
    if (!pulse_stream_valid(stream))
        hr = AUDCLNT_E_DEVICE_INVALIDATED;
    else if (!(stream->flags & AUDCLNT_STREAMFLAGS_EVENTCALLBACK))
        hr = AUDCLNT_E_EVENTHANDLE_NOT_EXPECTED;
    else if (stream->event)
        hr = HRESULT_FROM_WIN32(ERROR_INVALID_NAME);
    else
2119
        stream->event = params->event;
2120 2121
    pulse_unlock();

2122
    params->result = hr;
2123
    return STATUS_SUCCESS;
2124 2125
}

2126
static NTSTATUS pulse_is_started(void *args)
2127
{
2128
    struct is_started_params *params = args;
2129
    struct pulse_stream *stream = handle_get_stream(params->stream);
2130

2131
    pulse_lock();
2132
    params->started = pulse_stream_valid(stream) && stream->started;
2133
    pulse_unlock();
2134 2135

    return STATUS_SUCCESS;
2136 2137
}

2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194
static BOOL get_device_path(PhysDevice *dev, struct get_prop_value_params *params)
{
    const GUID *guid = params->guid;
    UINT serial_number;
    const char *fmt;
    char path[128];
    int len;

    switch (dev->bus_type) {
    case phys_device_bus_pci:
        fmt = "{1}.HDAUDIO\\FUNC_01&VEN_%04X&DEV_%04X\\%u&%08X";
        break;
    case phys_device_bus_usb:
        fmt = "{1}.USB\\VID_%04X&PID_%04X\\%u&%08X";
        break;
    default:
        return FALSE;
    }

    /* As hardly any audio devices have serial numbers, Windows instead
       appears to use a persistent random number. We emulate this here
       by instead using the last 8 hex digits of the GUID. */
    serial_number = (guid->Data4[4] << 24) | (guid->Data4[5] << 16) | (guid->Data4[6] << 8) | guid->Data4[7];

    len = sprintf(path, fmt, dev->vendor_id, dev->product_id, dev->index, serial_number);
    ntdll_umbstowcs(path, len + 1, params->wstr, ARRAY_SIZE(params->wstr));

    params->vt = VT_LPWSTR;
    return TRUE;
}

static NTSTATUS pulse_get_prop_value(void *args)
{
    static const GUID PKEY_AudioEndpoint_GUID = {
        0x1da5d803, 0xd492, 0x4edd, {0x8c, 0x23, 0xe0, 0xc0, 0xff, 0xee, 0x7f, 0x0e}
    };
    static const PROPERTYKEY devicepath_key = { /* undocumented? - {b3f8fa53-0004-438e-9003-51a46e139bfc},2 */
        {0xb3f8fa53, 0x0004, 0x438e, {0x90, 0x03, 0x51, 0xa4, 0x6e, 0x13, 0x9b, 0xfc}}, 2
    };
    struct get_prop_value_params *params = args;
    struct list *list = (params->flow == eRender) ? &g_phys_speakers : &g_phys_sources;
    PhysDevice *dev;

    params->result = S_OK;
    LIST_FOR_EACH_ENTRY(dev, list, PhysDevice, entry) {
        if (strcmp(params->pulse_name, dev->pulse_name))
            continue;
        if (IsEqualPropertyKey(*params->prop, devicepath_key)) {
            if (!get_device_path(dev, params))
                break;
            return STATUS_SUCCESS;
        } else if (IsEqualGUID(&params->prop->fmtid, &PKEY_AudioEndpoint_GUID)) {
            switch (params->prop->pid) {
            case 0:   /* FormFactor */
                params->vt = VT_UI4;
                params->ulVal = dev->form;
                return STATUS_SUCCESS;
2195 2196 2197 2198 2199 2200
            case 3:   /* PhysicalSpeakers */
                if (!dev->channel_mask)
                    goto fail;
                params->vt = VT_UI4;
                params->ulVal = dev->channel_mask;
                return STATUS_SUCCESS;
2201 2202 2203 2204 2205 2206 2207 2208
            default:
                break;
            }
        }
        params->result = E_NOTIMPL;
        return STATUS_SUCCESS;
    }

2209
fail:
2210 2211 2212 2213
    params->result = E_FAIL;
    return STATUS_SUCCESS;
}

2214
const unixlib_entry_t __wine_unix_call_funcs[] =
2215
{
2216 2217
    pulse_process_attach,
    pulse_process_detach,
2218
    pulse_main_loop,
2219
    pulse_get_endpoint_ids,
2220
    pulse_create_stream,
2221
    pulse_release_stream,
2222
    pulse_start,
2223
    pulse_stop,
2224
    pulse_reset,
2225
    pulse_timer_loop,
2226
    pulse_get_render_buffer,
2227
    pulse_release_render_buffer,
2228
    pulse_get_capture_buffer,
2229
    pulse_release_capture_buffer,
2230
    pulse_get_buffer_size,
2231
    pulse_get_latency,
2232
    pulse_get_current_padding,
2233
    pulse_get_next_packet_size,
2234
    pulse_get_frequency,
2235
    pulse_get_position,
2236
    pulse_set_volumes,
2237
    pulse_set_event_handle,
2238
    pulse_test_connect,
2239
    pulse_is_started,
2240
    pulse_get_prop_value,
2241
};
2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624

#ifdef _WIN64

typedef UINT PTR32;

static NTSTATUS pulse_wow64_main_loop(void *args)
{
    struct
    {
        PTR32 event;
    } *params32 = args;
    struct main_loop_params params =
    {
        .event = ULongToHandle(params32->event)
    };
    return pulse_main_loop(&params);
}

static NTSTATUS pulse_wow64_get_endpoint_ids(void *args)
{
    struct
    {
        EDataFlow flow;
        PTR32 endpoints;
        unsigned int size;
        HRESULT result;
        unsigned int num;
        unsigned int default_idx;
    } *params32 = args;
    struct get_endpoint_ids_params params =
    {
        .flow = params32->flow,
        .endpoints = ULongToPtr(params32->endpoints),
        .size = params32->size
    };
    pulse_get_endpoint_ids(&params);
    params32->size = params.size;
    params32->result = params.result;
    params32->num = params.num;
    params32->default_idx = params.default_idx;
    return STATUS_SUCCESS;
}

static NTSTATUS pulse_wow64_create_stream(void *args)
{
    struct
    {
        PTR32 name;
        PTR32 pulse_name;
        EDataFlow dataflow;
        AUDCLNT_SHAREMODE mode;
        DWORD flags;
        REFERENCE_TIME duration;
        PTR32 fmt;
        HRESULT result;
        PTR32 channel_count;
        PTR32 stream;
    } *params32 = args;
    struct create_stream_params params =
    {
        .name = ULongToPtr(params32->name),
        .pulse_name = ULongToPtr(params32->pulse_name),
        .dataflow = params32->dataflow,
        .mode = params32->mode,
        .flags = params32->flags,
        .duration = params32->duration,
        .fmt = ULongToPtr(params32->fmt),
        .channel_count = ULongToPtr(params32->channel_count),
        .stream = ULongToPtr(params32->stream)
    };
    pulse_create_stream(&params);
    params32->result = params.result;
    return STATUS_SUCCESS;
}

static NTSTATUS pulse_wow64_release_stream(void *args)
{
    struct
    {
        stream_handle stream;
        PTR32 timer;
        HRESULT result;
    } *params32 = args;
    struct release_stream_params params =
    {
        .stream = params32->stream,
        .timer = ULongToHandle(params32->timer)
    };
    pulse_release_stream(&params);
    params32->result = params.result;
    return STATUS_SUCCESS;
}

static NTSTATUS pulse_wow64_get_render_buffer(void *args)
{
    struct
    {
        stream_handle stream;
        UINT32 frames;
        HRESULT result;
        PTR32 data;
    } *params32 = args;
    BYTE *data = NULL;
    struct get_render_buffer_params params =
    {
        .stream = params32->stream,
        .frames = params32->frames,
        .data = &data
    };
    pulse_get_render_buffer(&params);
    params32->result = params.result;
    *(unsigned int *)ULongToPtr(params32->data) = PtrToUlong(data);
    return STATUS_SUCCESS;
}

static NTSTATUS pulse_wow64_get_capture_buffer(void *args)
{
    struct
    {
        stream_handle stream;
        HRESULT result;
        PTR32 data;
        PTR32 frames;
        PTR32 flags;
        PTR32 devpos;
        PTR32 qpcpos;
    } *params32 = args;
    BYTE *data = NULL;
    struct get_capture_buffer_params params =
    {
        .stream = params32->stream,
        .data = &data,
        .frames = ULongToPtr(params32->frames),
        .flags = ULongToPtr(params32->flags),
        .devpos = ULongToPtr(params32->devpos),
        .qpcpos = ULongToPtr(params32->qpcpos)
    };
    pulse_get_capture_buffer(&params);
    params32->result = params.result;
    *(unsigned int *)ULongToPtr(params32->data) = PtrToUlong(data);
    return STATUS_SUCCESS;
};

static NTSTATUS pulse_wow64_get_buffer_size(void *args)
{
    struct
    {
        stream_handle stream;
        HRESULT result;
        PTR32 size;
    } *params32 = args;
    struct get_buffer_size_params params =
    {
        .stream = params32->stream,
        .size = ULongToPtr(params32->size)
    };
    pulse_get_buffer_size(&params);
    params32->result = params.result;
    return STATUS_SUCCESS;
}

static NTSTATUS pulse_wow64_get_latency(void *args)
{
    struct
    {
        stream_handle stream;
        HRESULT result;
        PTR32 latency;
    } *params32 = args;
    struct get_latency_params params =
    {
        .stream = params32->stream,
        .latency = ULongToPtr(params32->latency)
    };
    pulse_get_latency(&params);
    params32->result = params.result;
    return STATUS_SUCCESS;
}

static NTSTATUS pulse_wow64_get_current_padding(void *args)
{
    struct
    {
        stream_handle stream;
        HRESULT result;
        PTR32 padding;
    } *params32 = args;
    struct get_current_padding_params params =
    {
        .stream = params32->stream,
        .padding = ULongToPtr(params32->padding)
    };
    pulse_get_current_padding(&params);
    params32->result = params.result;
    return STATUS_SUCCESS;
}

static NTSTATUS pulse_wow64_get_next_packet_size(void *args)
{
    struct
    {
        stream_handle stream;
        HRESULT result;
        PTR32 frames;
    } *params32 = args;
    struct get_next_packet_size_params params =
    {
        .stream = params32->stream,
        .frames = ULongToPtr(params32->frames)
    };
    pulse_get_next_packet_size(&params);
    params32->result = params.result;
    return STATUS_SUCCESS;
}

static NTSTATUS pulse_wow64_get_frequency(void *args)
{
    struct
    {
        stream_handle stream;
        HRESULT result;
        PTR32 freq;
    } *params32 = args;
    struct get_frequency_params params =
    {
        .stream = params32->stream,
        .freq = ULongToPtr(params32->freq)
    };
    pulse_get_frequency(&params);
    params32->result = params.result;
    return STATUS_SUCCESS;
}

static NTSTATUS pulse_wow64_get_position(void *args)
{
    struct
    {
        stream_handle stream;
        BOOL device;
        HRESULT result;
        PTR32 pos;
        PTR32 qpctime;
    } *params32 = args;
    struct get_position_params params =
    {
        .stream = params32->stream,
        .device = params32->device,
        .pos = ULongToPtr(params32->pos),
        .qpctime = ULongToPtr(params32->qpctime)
    };
    pulse_get_position(&params);
    params32->result = params.result;
    return STATUS_SUCCESS;
}

static NTSTATUS pulse_wow64_set_volumes(void *args)
{
    struct
    {
        stream_handle stream;
        float master_volume;
        PTR32 volumes;
        PTR32 session_volumes;
    } *params32 = args;
    struct set_volumes_params params =
    {
        .stream = params32->stream,
        .master_volume = params32->master_volume,
        .volumes = ULongToPtr(params32->volumes),
        .session_volumes = ULongToPtr(params32->session_volumes)
    };
    return pulse_set_volumes(&params);
}

static NTSTATUS pulse_wow64_set_event_handle(void *args)
{
    struct
    {
        stream_handle stream;
        PTR32 event;
        HRESULT result;
    } *params32 = args;
    struct set_event_handle_params params =
    {
        .stream = params32->stream,
        .event = ULongToHandle(params32->event)
    };
    pulse_set_event_handle(&params);
    params32->result = params.result;
    return STATUS_SUCCESS;
}

static NTSTATUS pulse_wow64_test_connect(void *args)
{
    struct
    {
        PTR32 name;
        HRESULT result;
        PTR32 config;
    } *params32 = args;
    struct test_connect_params params =
    {
        .name = ULongToPtr(params32->name),
        .config = ULongToPtr(params32->config), /* struct pulse_config is identical */
    };
    pulse_test_connect(&params);
    params32->result = params.result;
    return STATUS_SUCCESS;
}

static NTSTATUS pulse_wow64_get_prop_value(void *args)
{
    struct
    {
        PTR32 pulse_name;
        PTR32 guid;
        PTR32 prop;
        EDataFlow flow;
        HRESULT result;
        VARTYPE vt;
        union
        {
            WCHAR wstr[128];
            ULONG ulVal;
        };
    } *params32 = args;
    struct get_prop_value_params params =
    {
        .pulse_name = ULongToPtr(params32->pulse_name),
        .guid = ULongToPtr(params32->guid),
        .prop = ULongToPtr(params32->prop),
        .flow = params32->flow,
    };
    pulse_get_prop_value(&params);
    params32->result = params.result;
    params32->vt = params.vt;
    if (SUCCEEDED(params.result))
    {
        switch (params.vt)
        {
        case VT_UI4:
            params32->ulVal = params.ulVal;
            break;
        case VT_LPWSTR:
            wcscpy(params32->wstr, params.wstr);
            break;
        default:
            FIXME("Unhandled vt %04x\n", params.vt);
        }
    }
    return STATUS_SUCCESS;
}

const unixlib_entry_t __wine_unix_call_wow64_funcs[] =
{
    pulse_process_attach,
    pulse_process_detach,
    pulse_wow64_main_loop,
    pulse_wow64_get_endpoint_ids,
    pulse_wow64_create_stream,
    pulse_wow64_release_stream,
    pulse_start,
    pulse_stop,
    pulse_reset,
    pulse_timer_loop,
    pulse_wow64_get_render_buffer,
    pulse_release_render_buffer,
    pulse_wow64_get_capture_buffer,
    pulse_release_capture_buffer,
    pulse_wow64_get_buffer_size,
    pulse_wow64_get_latency,
    pulse_wow64_get_current_padding,
    pulse_wow64_get_next_packet_size,
    pulse_wow64_get_frequency,
    pulse_wow64_get_position,
    pulse_wow64_set_volumes,
    pulse_wow64_set_event_handle,
    pulse_wow64_test_connect,
    pulse_is_started,
    pulse_wow64_get_prop_value,
};

#endif /* _WIN64 */